Emerging Nanomaterials in Energy Storage

$30.00

Emerging Nanomaterials in Energy Storage

Aniruddha Mondal, Himadri Tanaya Das, Sudip Mondal, Vaishali N. Sonkusare and Ratiram Gomaji Chaudhary

Continuous renewable technologies can only be adequate when coupled with efficient nanomaterial based energy storage systems. These gadgets can reliably provide electricity even on overcast days or at night. To power the majority of consumer devices regardless of environmental conditions, the battery business is thriving. Among electrochemical energy storage devices (EESD), lithium-ion batteries (LiBs) have been a popular option for many eras. Even LiBs with a greater energy density (ED) and strong charge-discharge behaviour still have safety, durability problems and are expensive. Thus, various battery technologies, have attracted the attention of scientists all around the globe. However, both main and secondary batteries are used to power numerous electronic equipment. Focus will be placed on optimising battery performance, cost, and mass manufacturing in order to commercialize the batteries. This chapter will explore several battery kinds with different nanomaterials and their characteristics. Extensive details will be provided on the regulating criteria for battery performance, its fundamental design, and the operating principle of energy storage. In addition to diverse electrodes and electrolytes, this chapter provides information on the benefits and downsides of various batteries as well as ideas for future advancements in smart electronics battery systems.

Keywords
Energy Storage, Nanomaterials, Batteries, Supercapacitors, Energy Density, Power Density

Published online 2/1/2023, 33 pages

Citation: Aniruddha Mondal, Himadri Tanaya Das, Sudip Mondal, Vaishali N. Sonkusare and Ratiram Gomaji Chaudhary, Emerging Nanomaterials in Energy Storage, Materials Research Foundations, Vol. 141, pp 294-326, 2023

DOI: https://doi.org/10.21741/9781644902295-12

Part of the book on Emerging Applications of Nanomaterials

References
[1] J. Wiehe, J. Thiele, A. Walter, A. Hashemifarzad, J. Hingst, C. Haaren, Nothing to regret: Reconciling renewable energies with human wellbeing and nature in the German Energy Transition, Int. J. Energy Res. 45 (2021) 745–758. https://doi.org/10.1002/er.5870
[2] C. Chen, A. Yang, Power-to-methanol: The role of process flexibility in the integration of variable renewable energy into chemical production, Energy Convers. Manag. 228 (2021) 113673. https://doi.org/10.1016/j.enconman.2020.113673
[3] Viswanathan, Balasubramanian, Batteries: Energy Sources; Viswanathan, B., Ed.; Elsevier: Amsterdam, The Netherlands (2017) 263-313. https://doi.org/10.1016/B978-0-444-56353-8.00012-5
[4] A K. Potbhare, R.G. Chaudhary, P.B. Chouke, A. Rai, A. Abdala, R. Mishra, M. Desimone, Graphene-based materials and their nanocomposites with metal oxides: Biosynthesis, electrochemical, photocatalytic and antimicrobial applications. Mater. Res. Forum. 83 (2020) 79-116. http://dx.doi.org/10.21741/9781644900970-4
[5] Q. Zhang, J. Zhou, Z. Chen, C. Xu, W. Tang, G. Yang, C. Lai, Q. Xu, J. Yang, C. Peng, Direct Ink Writing of Moldable Electrochemical Energy Storage Devices: Ongoing Progress, Challenges, and Prospects, Adv. Eng. Mater. 23 (2021) 2100068. https://doi.org/10.1002/adem.202100068.
[6] H.T. Das, E.B. T, S. Dutta, N. Das, P. Das, A. Mondal, M. Imran, Recent trend of CeO2-based nanocomposites electrode in supercapacitor: A review on energy storage applications, J. Energy Storage. 50 (2022) 104643. https://doi.org/10.1016/j.est.2022.104643
[7] Das HT, Balaji TE, Dutta S, Das N, Maiyalagan T. Recent advances in MXene as electrocatalysts for sustainable energy generation: A review on surface engineering and compositing of MXene, Int. J. Energy Res. 46 (2022) 8625–8656. https://doi.org/10.1002/er.7847
[8] N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nat. Commun. 8 (2017) 405. https://doi.org/10.1038/s41467-017-00467-x
[9] Y. Li, J. Lu, Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?, ACS Energy Lett. 2 (2017) 1370–1377. https://doi.org/10.1021/acsenergylett.7b00119
[10] A. Mondal, PB Chouke, V Sonkusre, T Lambat, AA Abdala, S Mondal, Ni-doped ZnO nanocrystalline material for electrocatalytic oxygen reduction reaction, Materials Today: Proceedings, 2020, 29 (3), 715-719. https://doi.org/10.1016/j.matpr.2020.04.170
[11] L. Zhao, Z. Hu, W. Lai, Y. Tao, J. Peng, Z. Miao, Y. Wang, S. Chou, H. Liu, S. Dou, Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Na‐Ion Batteries beyond Li‐Ion and K‐Ion Counterparts, Adv. Energy Mater. 11 (2021) 2002704. https://doi.org/10.1002/aenm.202002704
[12] A. Mondal, H.T. Das, Energy storage batteries: basic feature and applications, in: Ceram. Sci. Eng., Elsevier (2022) 323–351. https://doi.org/10.1016/B978-0-323-89956-7.00008-5
[13] S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, High capacity positive electrodes for secondary Mg-ion batteries, Electrochim. Acta. 82 (2012) 243–249. https://doi.org/10.1016/j.electacta.2012.03.095
[14] A. Saha, P. Bharmoria, A. Mondal, S.C. Ghosh, S. Mahanty, A.B. Panda, Generalized synthesis and evaluation of formation mechanism of metal oxide/sulphide@C hollow spheres, J. Mater. Chem. A. 3 (2015) 20297–20304. https://doi.org/10.1039/C5TA05613F
[15] C.-T. Chu, A. Mondal, N. V. Kosova, J.-Y. Lin, Improved high-temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries, Appl. Surf. Sci. 530 (2020) 147169. https://doi.org/10.1016/j.apsusc.2020.147169
[16] A. Mondal, S. Maiti, K. Singha, S. Mahanty, A.B. Panda, TiO2-rGO nanocomposite hollow spheres: large scale synthesis and application as an efficient anode material for lithium-ion batteries, J. Mater. Chem. A. 5 (2017) 23853–23862. https://doi.org/10.1039/C7TA08164B
[17] H.T. Das, K. Mahendraprabhu, T. Maiyalagan, P. Elumalai, Performance of Solid-state Hybrid Energy-storage Device using Reduced Graphene-oxide Anchored Sol-gel Derived Ni/NiO Nanocomposite, Sci. Rep. 7 (2017) 15342. https://doi.org/10.1038/s41598-017-15444-z
[18] E. Duraisamy, P. Gurunathan, H.T. Das, K. Ramesha, P. Elumalai, [Co(salen)] derived Co/Co3O4 nanoparticle@carbon matrix as high-performance electrode for energy storage applications, J. Power Sources. 344 (2017) 103–110. https://doi.org/10.1016/j.jpowsour.2017.01.100
[19] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater. Today. 18 (2015) 252–264. https://doi.org/10.1016/j.mattod.2014.10.040
[20] M.S. Uddin, H. Tanaya Das, T. Maiyalagan, P. Elumalai, Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: Insights from standard models, Appl. Surf. Sci. 449 (2018) 445–453. https://doi.org/10.1016/j.apsusc.2017.12.088
[21] J. Chen, Y. Liu, M. Gao, Z. He, Z. Yu, Battery charging and discharging feature extraction method based on the best u-shapelets, in: 2018 IEEE 16th Int. Conf. Ind. Informatics, IEEE, (2018) 207–211. https://doi.org/10.1109/INDIN.2018.8471940
[22] I. Mexis, G. Todeschini, Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications, Energies. 13 (2020) 3616. https://doi.org/10.3390/en13143616
[23] B. Peng, J. Chen, Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells, Coord. Chem. Rev. 253 (2009) 2805–2813. https://doi.org/10.1016/j.ccr.2009.04.008
[24] C. Qiu, G. He, W. Shi, M. Zou, C. Liu, The polarization characteristics of lithium-ion batteries under cyclic charge and discharge, J. Solid State Electrochem. 23 (2019) 1887–1902. https://doi.org/10.1007/s10008-019-04282-w
[25] M. Stern, A.L. Geaby, Electrochemical Polarization, J. Electrochem. Soc. 104 (1957) 56. https://doi.org/10.1149/1.2428496
[26] Pistoia, Gianfranco, Basic Battery Concepts, Batter. Portable Devices (2005) 1-15. https://doi.org/10.1016/B978-044451672-5/50001-6
[27] C. Jin, J. Nai, O. Sheng, H. Yuan, W. Zhang, X. Tao, X.W. (David) Lou, Biomass-based materials for green lithium secondary batteries, Energy Environ. Sci. 14 (2021) 1326–1379. https://doi.org/10.1039/D0EE02848G
[28] Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J. Power Sources. 100 (2001) 101–106. https://doi.org/10.1016/S0378-7753(01)00887-4
[29] X. Wang, G. Tan, Y. Bai, F. Wu, C. Wu, Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries: Current Status and Prospective, Electrochem. Energy Rev. 4 (2021) 35–66. thtps://doi.org/10.1007/s41918-020-00073-4
[30] J.F. Manwell, J.G. McGowan, Lead acid battery storage model for hybrid energy systems, Sol. Energy. 50 (1993) 399–405. https://doi.org/10.1016/0038-092X(93)90060-2
[31] P. Ruetschi, Review on the lead—acid battery science and technology, J. Power Sources. 2 (1977) 3–120. https://doi.org/10.1016/0378-7753(77)85003-9
[32] N.E. Galushkin, N.N. Yazvinskaya, D.N. Galushkin, Generalized Model for Self-Discharge Processes in Alkaline Batteries, J. Electrochem. Soc. 159 (2012) A1315–A1317. https://doi.org/10.1149/2.081208jes
[33] F. Putois, Market for nickel-cadmium batteries, J. Power Sources. 57 (1995) 67–70. https://doi.org/10.1016/0378-7753(95)02243-0
[34] H.S. Lim, G.R. Zelter, D.U. Allison, R.E. Haun, Characteristics of nickel-metal hydride cells containing metal hydride alloys prepared by an atomization technique, J. Power Sources. 66 (1997) 101–105. https://doi.org/10.1016/S0378-7753(96)02488-3
[35] A.-H. Marincaş, P. Ilea, Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications, Coatings. 11 (2021) 456. https://doi.org/10.3390/coatings11040456
[36] M.B. Lim, T.N. Lambert, B.R. Chalamala, Rechargeable alkaline zinc–manganese oxide batteries for grid storage: Mechanisms, challenges and developments, Mater. Sci. Eng. R Reports. 143 (2021) 100593. https://doi.org/10.1016/j.mser.2020.100593
[37] W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Recent Progress in Redox Flow Battery Research and Development, Adv. Funct. Mater. 23 (2013) 970–986. https://doi.org/10.1002/adfm.201200694
[38] M. Skyllas‐Kazacos, F. Grossmith, Efficient Vanadium Redox Flow Cell, J. Electrochem. Soc. 134 (1987) 2950–2953. https://doi.org/10.1149/1.2100321
[39] M. Rychcik, M. Skyllas-Kazacos, Characteristics of a new all-vanadium redox flow battery, J. Power Sources. 22 (1988) 59–67. https://doi.org/10.1016/0378-7753(88)80005-3
[40] W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface Stability in Solid-State Batteries, Chem. Mater. 28 (2016) 266–273. https://doi.org/10.1021/acs.chemmater.5b04082
[41] J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries, J. Power Sources. 282 (2015) 299–322. https://doi.org/10.1016/j.jpowsour.2015.02.054
[42] H.T. Das, P. Barai, S. Dutta, N. Das, P. Das, M. Roy, M. Alauddin, H.R. Barai, Polymer Composites with Quantum Dots as Potential Electrode Materials for Supercapacitors Application: A Review, Polymers (Basel). 14 (2022) 1053. https://doi.org/10.3390/polym14051053
[43] A. Saha, A. Mondal, S. Maiti, S.C. Ghosh, S. Mahanty, A.B. Panda, A facile method for the synthesis of a C@MoO2 hollow yolk–shell structure and its electrochemical properties as a faradaic electrode, Mater. Chem. Front. 1 (2017) 1585–1593. https://doi.org/10.1039/C7QM00006E
[44] Y.-K. Hsu, A. Mondal, Y.-Z. Su, Z. Sofer, K. Shanmugam Anuratha, J.-Y. Lin, Highly hydrophilic electrodeposited NiS/Ni3S2 interlaced nanosheets with surface-enriched Ni3+ sites as binder-free flexible cathodes for high-rate hybrid supercapacitors, Appl. Surf. Sci. 579 (2022) 151923. https://doi.org/10.1016/j.apsusc.2021.151923
[45] R.G. Chaudhary, V.N. Sonkusare, G.S. Bhusari, A. Mondal, D.P. Shaik, H.D. Juneja, Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance, Res. Chem. Intermed. 44 (2018) 2039–2060. https://doi.org/10.1007/s11164-017-3213-z
[46] A. Mondal, C.-Y. Lee, H. Chang, P. Hasin, C.-R. Yang, J.-Y. Lin, Electrodeposited Co0.85Se thin films as free-standing cathode materials for high-performance hybrid supercapacitors, J. Taiwan Inst. Chem. Eng. 121 (2021) 205–216. https://doi.org/10.1016/j.jtice.2021.04.017
[47] S.S. Shah, H.T. Das, H.R. Barai, M.A. Aziz, Boosting the Electrochemical Performance of Polyaniline by One-Step Electrochemical Deposition on Nickel Foam for High-Performance Asymmetric Supercapacitor, Polymers (Basel). 14 (2022) 270. https://doi.org/10.3390/polym14020270
[48] S. Vinoth, H.T. Das, M. Govindasamy, S.-F. Wang, N.S. Alkadhi, M. Ouladsmane, Facile solid-state synthesis of layered molybdenum boride-based electrode for efficient electrochemical aqueous asymmetric supercapacitor, J. Alloys Compd. 877 (2021) 160192. https://doi.org/10.1016/j.jallcom.2021.160192
[49] H.T. Das, S. Saravanya, P. Elumalai, Disposed Dry Cells as Sustainable Source for Generation of Few Layers of Graphene and Manganese Oxide for Solid‐State Symmetric and Asymmetric Supercapacitor Applications, ChemistrySelect. 3 (2018) 13275–13283. https://doi.org/10.1002/slct.201803034
[50] E. Duraisamy, H.T. Das, A. Selva Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@carbon nanocomposite, New J. Chem. 42 (2018) 6114–6124. https://doi.org/10.1039/C7NJ04638C