Nanomaterials for Self-Healing Hydrogels


Nanomaterials for Self-Healing Hydrogels

Md. Mahamudul Hasan Rumon, Stephen Don Sarkar, Md. Mahbub Alam and Chanchal Kumar Roy

Materials with self-healing property are considered as the smart materials for various advanced technological applications. Previously only living substances such as tissues were thought to have self-healing properties that are required for their survival and adaptation to environmental changes. Recently, novel synthetic materials such as hydrogels have been prepared and developed which demonstrated self-healing performances. Exceptional self-healing has been observed in hydrogels introducing different kinds of nanoparticles. These hydrogels have exceptional functionality and mechanical properties. The techniques of the introduction, exploration, and measurement of the properties related to self-healing are challenging due to the wide variety of substances. In this chapter, efforts have been made to discuss the mechanism, types, and drawbacks of nanomaterial-modified self-healing hydrogels.

Self-healing, Hydrogels, Nanomaterials, Nanocomposites, Characterizations

Published online 2/1/2023, 24 pages

Citation: Md. Mahamudul Hasan Rumon, Stephen Don Sarkar, Md. Mahbub Alam and Chanchal Kumar Roy, Nanomaterials for Self-Healing Hydrogels, Materials Research Foundations, Vol. 141, pp 270-293, 2023


Part of the book on Emerging Applications of Nanomaterials

[1] A. Ahsan, W.-X. Tian, M. A. Farooq, D. H. Khan, An overview of hydrogels and their role in transdermal drug delivery, International Journal of Polymeric Materials and Polymeric Biomaterials 70 (2021) 574-584.
[2] P. B. Mohite, S. S. Adhav, A hydrogels: Methods of preparation and applications, Int. J. Adv. Pharm 6 (2017) 79-85.
[3] A. S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews 64 (2012) 18-23.
[4] R. Mohammadinejad, H. Maleki, E. Larraneta, A. R. Fajardo, A. B. Nik, A. Shavandi, A. Sheikhi, M. Ghorbanpour, M. Farokhi, and P. Govindh, Status and future scope of plant-based green hydrogels in biomedical engineering, Applied Materials Today 16 (2019) 213-246.
[5] S. J. Song, J. Choi, Y. D. Park, J. J. Lee, S. Y. Hong, K. Sun, A three‐dimensional bioprinting system for use with a hydrogel‐based biomaterial and printing parameter characterization, Artificial Organs 34 (2010) 1044-1048.
[6] M. C. Catoira, L. Fusaro, D. Di Francesco, M. Ramella, F. Boccafoschi, Overview of natural hydrogels for regenerative medicine applications, Journal of Materials Science: Materials in Medicine 30 (2019) 1-10.
[7] P. Matricardi, C. Di Meo, T. Coviello, W. E. Hennink, F. Alhaique, Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering, Advanced Drug Delivery Reviews 65 (2013) 1172-1187.
[8] Q. Chai, Y. Jiao, X. Yu, Hydrogels for biomedical applications: their characteristics and the mechanisms behind them, Gels 3 (2017) 6.
[9] G. Su, S. Yin, Y. Guo, F. Zhao, Q. Guo, X. Zhang, T. Zhou, G. Yu, Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications, Materials Horizons 8 (2021) 1795-1804.
[10] M. M. H. Rumon, S. D. Sarkar, M. M. Uddin, M. M. Alam, S. N. Karobi, A. Ayfar, M. S. Azam, C. K. Roy, Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels, RSC Advances 12 (2022) 7453-7463.
[11] M. Diba, S. Spaans, K. Ning, B. D. Ippel, F. Yang, B. Loomans, P. Y. W. Dankers, S. C. G. Leeuwenburgh, Self‐healing biomaterials: from molecular concepts to clinical applications, Advanced Materials Interfaces 5 (2018) 1800118.
[12] L. Saunders, P. X. Ma, Self‐healing supramolecular hydrogels for tissue engineering applications, Macromolecular Bioscience 19 (2019) 1800313.
[13] Q. Chen, L. Zhu, H. Chen, H. Yan, L. Huang, J. Yang, J. Zheng, A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self‐healing properties, Advanced Functional Materials 25 (2015) 1598-1607.
[14] T. Cheng, Y. Z. Zhang, S. Wang, Y. L. Chen, S. Y. Gao, F. Wang, W. Y. Lai, W., Huang, Conductive Hydrogel‐Based Electrodes and Electrolytes for Stretchable and Self‐Healable Supercapacitors, Advanced Functional Materials 31 (2021) 2101303.
[15] S. Strandman, X. X. Zhu, Self-healing supramolecular hydrogels based on reversible physical interactions, Gels 2 (2016) 16.
[16] Y. Yang, M. W. Urban, Self‐healing of polymers via supramolecular chemistry, Advanced Materials Interfaces 5 (2018) 1800384.
[17] Q. Li, C. Liu, J. Wen, Y. Wu, Y. Shan, J. Liao, The design, mechanism and biomedical application of self-healing hydrogels, Chinese Chemical Letters 28 (2017) 1857-1874.
[18] Z. Wei, J. H. Yang, Z. Q. Liu, F. Xu, J. X. Zhou, M. Zrínyi, Y. Osada, Y. M. Chen, Self‐Healing Materials: Novel Biocompatible Polysaccharide‐Based Self‐Healing Hydrogel, Advanced Functional Materials 25 (2015) 1471-1471.
[19] Y. Zhong, P. Li, J. Hao, X. Wang, Bioinspired self-healing of kinetically inert hydrogels mediated by chemical nutrient supply, ACS Applied Materials & Interfaces 12 (2020) 6471-6478.
[20] M. Chen, D. Fan, S. Liu, Z. Rao, Y. Dong, W. Wang, H. Chen, L. Bai, Z. Cheng, Fabrication of self-healing hydrogels with surface functionalized microcapsules from stellate mesoporous silica, Polymer Chemistry 10 (2019) 503-511.
[21] S. Liu, Z. Rao, R. Wu, Z. Sun, Z. Yuan, L. Bai, W. Wang, H. Yang, H. Chen, Fabrication of microcapsules by the combination of biomass porous carbon and polydopamine for dual self-healing hydrogels, Journal of Agricultural and Food Chemistry 67 (2019) 1061-1071.
[22] W. Peng, L. Han, H. Huang, X. Xuan, G. Pan, L. Wan, T. Lu, M. Xu, L. Pan, A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor, Journal of Materials Chemistry A 8 (2020) 26109-26118.
[23] Z. Rao, S. Liu, R. Wu, G. Wang, Z. Sun, L. Bai, W. Wang, H. Chen, H. Yang, D. Wei, Fabrication of dual network self-healing alginate/guar gum hydrogels based on polydopamine-type microcapsules from mesoporous silica nanoparticles, International Journal of Biological Macromolecules 129 (2019) 916-926.
[24] M.-M. Song, Y.-M. Wang, X.-Y. Liang, X.-Q. Zhang, S. Zhang, B.-J. Li, Functional materials with self-healing properties: A review, Soft Matter 15 (2019) 6615-6625.
[25] N. Wen, T. Song, Z. Ji, D. Jiang, Z. Wu, Y. Wang, and Z. Guo, Recent advancements in self-healing materials: Mechanicals, performances and features, Reactive and Functional Polymers 168 (2021) 105041.
[26] D. Sun, G. Sun, X. Zhu, A. Guarin, B. Li, Z. Dai, J. Ling, A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement, Advances in Colloid and Interface Science 256 (2018) 65-93.
[27] W. Sun, H. Wang, Self-healing of asphalt binder with cohesive failure: Insights from molecular dynamics simulation, Construction and Building Materials 262 (2020) 120538.
[28] C. E. Attinger, J. E. Janis, J. Steinberg, J. Schwartz, A. Al-Attar, K. Couch, Clinical approach to wounds: debridement and wound bed preparation including the use of dressings and wound-healing adjuvants, Plastic and Reconstructive Surgery 117 (2006) 72S-109S.
[29] E. D. Rodriguez, X. Luo, P. T. Mather, Linear/network poly (ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH), ACS Applied Materials & Interfaces 3 (2011) 152-161.
[30] C. Kim, N. Yoshie, Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers?, Polymer Journal 50 (2018) 919-929.
[31] H. Mokhtari, M. Kharaziha, F. Karimzadeh, and S. Tavakoli, An injectable mechanically robust hydrogel of Kappa-carrageenan-dopamine functionalized graphene oxide for promoting cell growth, Carbohydrate Polymers 214 (2019) 234-249.
[32] E. J. Bailey, K. I. Winey, Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review, Progress in Polymer Science 105 (2020) 101242.
[33] R. Weeber, M. Hermes, A. M. Schmidt, C. Holm, Polymer architecture of magnetic gels: a review, Journal of Physics: Condensed Matter 30 (2018) 063002.
[34] M. I. Sujan, S. D. Sarkar, S. Sultana, L. Bushra, R. Tareq, C. K. Roy, M. S. Azam, Bi-functional silica nanoparticles for simultaneous enhancement of mechanical strength and swelling capacity of hydrogels, RSC Advances 10 (2020) 6213-6222.
[35] Z. Liu, Y. Faraj, X. J. Ju, W. Wang, R. Xie, L. Y. Chu, Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: A mini review, Journal of Polymer Science Part B: Polymer Physics 56 (2018) 1306-1313.
[36] S. Spoljaric, A. Salminen, N. D. Luong, J. Seppälä, Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking, European Polymer Journal 56 (2014) 105-117.
[37] A. Zengin, J. P. O. Castro, P. Habibovic, S. H. Van Rijt, Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical properties, Nanoscale 13 (2021) 1144-1154.
[38] X. Xue, Y. Hu, Y. Deng, J. Su, Recent advances in design of functional biocompatible hydrogels for bone tissue engineering, Advanced Functional Materials 31 (2021) 2009432.
[39] E. V. Skorb, D. V. Andreeva, Layer-by-Layer approaches for formation of smart self-healing materials, Polymer Chemistry 4 (2013) 4834-4845.
[40] R. Fuhrer, E. K. Athanassiou, N. A. Luechinger, and W. J. Stark, Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field‐driven actuators with muscle‐like flexibility, Small 5 (2009) 383-388.
[41] N. Asadi, E. Alizadeh, R. Salehi, B. Khalandi, S. Davaran, and A. Akbarzadeh, Nanocomposite hydrogels for cartilage tissue engineering: a review, Artificial Cells, Nanomedicine, and Biotechnology 46 (2018) 465-471.
[42] F.-m. Cheng, H.-x. Chen, H.-d. Li, Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators, European Polymer Journal 124 (2020) 109448.
[43] I. Pastoriza-Santos, C. Kinnear, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, Plasmonic polymer nanocomposites, Nature Reviews Materials 3 (2018) 375-391.
[44] V. Bertolino, G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media, Langmuir 33 (2017) 3317-3323.
[45] S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, Nanoparticle solutions as adhesives for gels and biological tissues, Nature 505 (2014) 382-385.
[46] Z.-B. Zhang, Z.-G. Shen, J.-X. Wang, H.-X. Zhang, H. Zhao, J.-F. Chen, J. Yun, Micronization of silybin by the emulsion solvent diffusion method, International Journal of Pharmaceutics 376 (2009) 116-122.
[47] S. B. Marpu, E. N. Benton, Shining light on chitosan: A review on the usage of chitosan for photonics and nanomaterials research, International Journal of Molecular Sciences 19 (2018) 1795.
[48] S. Bhattacharya, S. K. Samanta, Soft-nanocomposites of nanoparticles and nanocarbons with supramolecular and polymer gels and their applications, Chemical Reviews 116 (2016) 11967-12028.
[49] H. Kawaguchi, Functional polymer microspheres, Progress in Polymer Science 25 (2000) 1171-1210.
[50] T. E. Gartner Iii, A. Jayaraman, Modeling and simulations of polymers: A roadmap, Macromolecules 52 (2019) 755-786.
[51] D. T. Cheung, M. E. Nimni, Mechanism of crosslinking of proteins by glutaraldehyde II. Reaction with monomeric and polymeric collagen, Connective Tissue Research 10 (1982) 201-216.
[52] G. A. Williams, R. Ishige, O. R. Cromwell, J. Chung, A. Takahara, Z. Guan, Mechanically robust and self‐healable superlattice nanocomposites by self‐assembly of single‐component “sticky” polymer‐grafted nanoparticles, Advanced Materials 27 (2015) 3934-3941.
[53] O. Goor, P. Y. W. Dankers, Advances in the development of supramolecular polymeric biomaterials, Comprehensive Supramolecular Chemistry II. Advances in the Development of Supramolecular Polymeric Biomaterials 255 (2017) 282.
[54] R. G. Chaudhary, A. K. Potbhare, P. B. Chouke, A. R. Rai, R. P. Mishra, M. Desimone, A. Abdala, Graphene-based nanomaterials and their nanocomposites with metal oxides: biosynthesis, electrochemical, photocatalytic and antimicrobial applications, Magnetic Oxides and Composites II, Materials Research Forum 83 (2020) 79-116.
[55] M. S. Umekar, G. S. Bhusari, A. K. Potbhare, A. Mondal, B. P. Kapgate, M. Desimone, R. G. Chaudhary, Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications, Current Pharmaceutical Biotechnology 22 (2021) 1759-1781.
[56] S. G. Giuffrida, W. Forysiak, P. Cwynar, R. Szweda, Shaping macromolecules for sensing applications-from polymer hydrogels to foldamers, Polymers 14 (2022) 580.
[57] J. Liu, G. Song, C. He, H. Wang, Self‐healing in tough graphene oxide composite hydrogels, Macromolecular Rapid Communications 34 (2013) 1002-1007.
[58] J. Liu, J. Tang, J. J. Gooding, Strategies for chemical modification of graphene and applications of chemically modified graphene, Journal of Materials Chemistry 22 (2012) 12435-12452.
[59] D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, H. Yu, Cellulose‐based flexible functional materials for emerging intelligent electronics, Advanced Materials 33 (2021) 2000619.
[60] B. L. Peng, N. Dhar, H. L. Liu, K. C. Tam, Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective, The Canadian Journal of Chemical Engineering 89 (2011) 1191-1206.
[61] H. Rammal, A. GhavamiNejad, A. Erdem, R. Mbeleck, M. Nematollahi, S. E. Diltemiz, H. Alem, M. A. Darabi, Y. N. Ertas, E. J. Caterson, Advances in Biomedical Applications of Self-Healing Hydrogels, Materials Chemistry Frontiers 5 (2021) 4368-4400.
[62] D. Prado-Audelo, M. Luisa, I. H. Caballero-Florán, N. Mendoza-Muñoz, D. Giraldo-Gomez, J. Sharifi-Rad, J. K. Patra, M. González-Torres, B. Florán, H. Cortes, Current progress of self-healing polymers for medical applications in tissue engineering, Iranian Polymer Journal (2021) 1-23.
[63] L.-H. Fu, C. Qi, M.-G. Ma, P. Wan, Multifunctional cellulose-based hydrogels for biomedical applications, Journal of Materials Chemistry B 7 (2019) 1541-1562.
[64] S. M. Kabir, P. P. Sikdar, B. Haque, M. A. Bhuiyan, A. Ali, and M. N. Islam, Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications, Progress in Biomaterials 7 (2018) 153-174.
[65] C. Chang, L. Zhang, Cellulose-based hydrogels: Present status and application prospects, Carbohydrate Polymers 84 (2011) 40-53.
[66] B. Li, Y. Zhang, C. Wu, B. Guo, Z. Luo, Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly (acrylic acid), Carbohydrate Polymers 198 (2018) 1-8.
[67] D. M. Nascimento, Y. L. Nunes, M. C. B. Figueirêdo, H. M. C. de Azeredo, F. A. Aouada, J. P. A. Feitosa, M. F. Rosa, A. Dufresne, Nanocellulose nanocomposite hydrogels: Technological and environmental issues, Green Chemistry 20 (2018) 2428-2448.
[68] Q. Peng, J. Chen, T. Wang, X. Peng, J. Liu, X. Wang, J. Wang, H. Zeng, Recent advances in designing conductive hydrogels for flexible electronics, InfoMat 2 (2020) 843-865.
[69] C. Jiang, W. Fan, N. Zhang, G. Zhao, W. Wang, L. Bai, H. Chen, H. Yang, Surface engineering of cellulose nanocrystals via SI-AGET ATRP of glycidyl methacrylate and ring-opening reaction for fabricating self-healing nanocomposite hydrogels, Cellulose 28 (2021) 9785-9801.
[70] G. Xiao, Y. Wang, H. Zhang, L. Chen, S. Fu, Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone, Carbohydrate Polymers 218 (2019) 68-77.
[71] A. B. W. Brochu, S. L. Craig, W. M. Reichert, Self‐healing biomaterials, Journal of Biomedical Materials Research Part A 96 (2011) 492-506.
[72] A. U. Chaudhry, A. Abdala, S. P. Lonkar, R. G. Chaudhary, A. Mabrouk, Thermal, electrical, and mechanical properties of highly filled HDPE/graphite nanoplatelets composites, Materials Today: Proceedings 29 (2020) 704-708
[73] M. Zhu, J. Liu, L. Gan, M. Long, Research progress in bio-based self-healing materials, European Polymer Journal 129 (2020) 109651.
[74] M. E. Abd El-Hack, M. T. El-Saadony, M. E. Shafi, N. M. Zabermawi, M. Arif, G. E. Batiha, A. F. Khafaga, Y. M. Abd El-Hakim, A. A. Al-Sagheer, Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, International Journal of Biological Macromolecules 164 (2020) 2726-2744.
[75] L. Phil, M. Naveed, I. S. Mohammad, L. Bo, D. Bin, Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products, Biomedicine & Pharmacotherapy 102 (2018) 438-451.
[76] V.-D. Mai, S.-R. Shin, D.-S. Lee, I. Kang, Thermal healing, reshaping and ecofriendly recycling of epoxy resin crosslinked with Schiff base of vanillin and hexane-1, 6-diamine, Polymers 11 (2019) 293.
[77] D. D. Steppan, M. F. Doherty, M. F. Malone, A simplified degradation model for nylon 6, 6 polymerization, Journal of Applied Polymer Science 42 (1991) 1009-1021.
[78] E. Troschke, M. Oschatz, and I. K. Ilic, Schiff‐bases for sustainable battery and supercapacitor electrodes, Wiley Online Library, 2021.
[79] H. Xu, L. Zhang, J. Cai, Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers, ACS Applied Bio Materials 2 (2018) 196-204.
[80] J. Qu, X. Zhao, Y. Liang, T. Zhang, P. X. Ma, B. Guo, Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing, Biomaterials 183 (2018), 185-199.
[81] Z. Wang, L. Yang, W. Fang, Chitosan‐based hydrogels, Chitin and chitosan: Properties and applications (2019) 97-144.
[82] F. Sami El-banna, M. E. Mahfouz, S. Leporatti, M. El-Kemary, N. An Hanafy, Chitosan as a natural copolymer with unique properties for the development of hydrogels, Applied Sciences 9 (2019) 2193.
[83] J. Jin, L. Cai, Y.-G. Jia, S. Liu, Y. Chen, L. Ren, Progress in self-healing hydrogels assembled by host-guest interactions: Preparation and biomedical applications, Journal of Materials Chemistry B 7 (2019) 1637-1651.
[84] M. Mohamadhoseini, Z. Mohamadnia, Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules, Coordination Chemistry Reviews 432 (2021) 213711.
[85] Y. Zhou, Y. Zhang, Z. Dai, F. Jiang, J. Tian, W. Zhang, A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host-guest crosslinker, Biomaterials Science 8 (2020) 3359-3369.
[86] F. Jiang, Z. Tang, Y. Zhang, Y. Ju, H. Gao, N. Sun, F. Liu, P. Gu, W. Zhang, Enhanced proliferation and differentiation of retinal progenitor cells through a self-healing injectable hydrogel, Biomaterials Science, 7 (2019) 2335-2347.
[87] V. S. Raghuwanshi, G. Garnier, Characterisation of hydrogels: Linking the nano to the microscale, Advances in Colloid and Interface Science 274 (2019) 102044.
[88] J. C. G. Jeynes, Nanotubes for Biotechnology, Handbook of Nanophysics: Nanomedicine and Nanorobotics, 2010.
[89] J. A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A. C. Balazs, T. Kowalewski, K. Matyjaszewski, Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy, Macromolecules 45 (2012) 142-149.
[90] L. Zedler, M. D. Hager, U. S. Schubert, M. J. Harrington, M. Schmitt, J. Popp, B. Dietzek, Monitoring the chemistry of self-healing by vibrational spectroscopy-current state and perspectives, Materials Today 17 (2014) 57-69.
[91] R. Geitner, F. B. Legesse, N. Kuhl, T. W. Bocklitz, S. Zechel, J. Vitz, M. Hager, U. S. Schubert, B. Dietzek, M. Schmitt, Do you get what you see? Understanding molecular self‐healing, Chemistry-A European Journal 24 (2018) 2493-2502.
[92] F. El-Diasty, Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy, Vibrational Spectroscopy 55 (2011) 1-37.
[93] X. Tong, L. Du, Q. Xu, Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay/poly (N-isopropylacrylamide), Journal of Materials Chemistry A 6 (2018) 3091-3099.
[94] M. Caprioli, I. Roppolo, A. Chiappone, L. Larush, C. F. Pirri, S. Magdassi, 3D-printed self-healing hydrogels via digital light processing, Nature Communications 12 (2021) 1-9.
[95] J. Zhao, D. Diaz-Dussan, M. Wu, Y.-Y. Peng, J. Wang, H. Zeng, W. Duan, L. Kong, X. Hao, R. Narain, Dual-cross-linked network hydrogels with multiresponsive, self-healing, and shear strengthening properties, Biomacromolecules 22 (2020) 800-810.
[96] S. Bashir, M. Hina, J. Iqbal, A. H. Rajpar, M. A. Mujtaba, N. A. Alghamdi, S. Wageh, K. Ramesh, S. Ramesh, Fundamental concepts of hydrogels: Synthesis, properties, and their applications, Polymers 12 (2020) 2702.
[97] M. Vázquez‐González, I. Willner, Stimuli‐responsive biomolecule‐based hydrogels and their applications, Angewandte Chemie International Edition 59 (2020) 15342-15377.
[98] A. B. Ihsan, T. L. Sun, T. Kurokawa, S. N. Karobi, T. Nakajima, T. Nonoyama, C. K. Roy, F. Luo, J. P. Gong, Self-healing behaviors of tough polyampholyte hydrogels, Macromolecules 49 (2016) 4245-4252.
[99] Q. Geng, C. Zhang, K. Zheng, J. Zhang, J. Cheng, W. Yang, Preparation and properties of a self-healing, multiresponsive color-change hydrogel, Industrial & Engineering Chemistry Research 59 (2020) 10689-10696.
[100] G. Li, D. Nettles, Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam, Polymer 51 (2010) 755-762.
[101] T. L. Sun, F. Luo, W. Hong, K. Cui, Y. Huang, H. J. Zhang, D. R. King, T. Kurokawa, T. Nakajima, J. P. Gong, Bulk energy dissipation mechanism for the fracture of tough and self-healing hydrogels, Macromolecules 50 (2017) 2923-2931.
[102] Q. Wang, Z. Gao, K. Yu, Interfacial self-healing of nanocomposite hydrogels: Theory and experiment, Journal of the Mechanics and Physics of Solids 109 (2017) 288-306.
[103] Y. Jiang, N. Krishnan, J. Heo, R. H. Fang, L. Zhang, Nanoparticle-hydrogel superstructures for biomedical applications, Journal of Controlled Release 324 (2020) 505-521.
[104] D. Chimene, R. Kaunas, A. K. Gaharwar, Hydrogel bioink reinforcement for additive manufacturing: A focused review of emerging strategies, Advanced Materials 32 (2020) 1902026.
[105] N. Molinari, G. Jung, S. Angioletti-Uberti, Designing nanoparticles as glues for hydrogels: Insights from a microscopic model, Macromolecules 54 (2021) 1992-2000.
[106] J. S. Chen, X. W. Lou, The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles, Journal of Power Sources 195 (2010) 2905-2908.
[107] M. C. Arno, M. Inam, A. C. Weems, Z. Li, A. L. A. Binch, C. I. Platt, S. M. Richardson, J. A. Hoyland, A. P. Dove, and R. K. O’Reilly, Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties, Nature Communications 11 (2020) 1-9.
[108] A. D. Valino, J. R. C. Dizon, A. H. Espera Jr, Q. Chen, J. Messman, R. C. Advincula, Advances in 3D printing of thermoplastic polymer composites and nanocomposites, Progress in Polymer Science 98 (2019) 101162.
[109] D. Fan, G. Wang, A. Ma, W. Wang, H. Chen, L. Bai, H. Yang, D. Wei, L. Yang, Surface engineering of porous carbon for self-healing nanocomposite hydrogels by mussel-inspired chemistry and PET-ATRP, ACS Applied Materials & Interfaces 11 (2019) 38126-38135.
[110] M. Zhou, J. He, L. Wang, S. Zhao, Q. Wang, S. Cui, X. Qin, R. Wang, Synthesis of carbonized-cellulose nanowhisker/FeS2@ reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells, Solar Energy 166 (2018) 71-79.
[111] S. Kim, Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, International Journal of Polymer Science, 2018.
[112] Y. Tu, N. Chen, C. Li, H. Liu, R. Zhu, S. Chen, Q. Xiao, J. Liu, S. Ramakrishna, L. He, Advances in injectable self-healing biomedical hydrogels, Acta Biomaterialia 90 (2019) 1-20.
[113] M. Diba, J. An, S. Schmidt, M. Hembury, D. Ossipov, A. R. Boccaccini, S. C. G. Leeuwenburgh, Exploiting bisphosphonate-bioactive‐glass interactions for the development of self‐healing and bioactive composite hydrogels, Macromolecular Rapid Communications 37 (2016) 1952-1959.
[114] Y. M. Malinskii, V. V. Prokopenko, N. A. Ivanova, V. A. Kargin, Investigation of self-healing of cracks in polymers, Polymer Mechanics 6 (1970) 240-244.
[115] E. Zhang, T. Wang, L. Zhao, W. Sun, X. Liu, Z. Tong, Fast self-healing of graphene oxide-hectorite clay-poly (N, N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation, ACS Applied Materials & Interfaces 6 (2014) 22855-22861.
[116] K. Haraguchi, K. Uyama, H. Tanimoto, Self‐healing in nanocomposite hydrogels, Macromolecular Rapid Communications 32 (2011) 1253-1258.
[117] A. Dev, S. J. Mohanbhai, A. C. Kushwaha, A. Sood, M. N. Sardoiwala, S. R. Choudhury, S. Karmakar, κ-carrageenan-C-phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring, Acta Biomaterialia 109 (2020) 121-131.
[118] Y. Li, C. P. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications, Materials Science and Engineering: R: Reports 51 (2006) 1-35.
[119] S. Awasthi, J. K. Gaur, S. K. Pandey, M. S. Bobji, and C. Srivastava, High-strength, strongly bonded nanocomposite hydrogels for cartilage repair, ACS Applied Materials & Interfaces 13 (2021) 24505-24523.