Ion Exchange Resins as Carriers for Sustained Drug Release


Ion Exchange Resins as Carriers for Sustained Drug Release

Bhavana Sampath Kumar, Junaiha Kapoor, Sandra Ravi M, Dileep Francis

Ion exchange resins are water-insoluble cross-linked polymers conventionally used in chemical engineering to separate and purify substances from fluid mixtures and for the separation of gases. They are used in the pharmaceutical industry as a carrier for controlled drug delivery systems. Sustained drug release involves the release of the drug at a predetermined rate into the target system and helps maintain a constant drug concentration for a specified period. At present ion-exchange resins are widely studied and used as drug-delivery agents. Ion-exchange fibers are sought as an alternative due to their better efficiency in drug loading and delivery.

Sustained Drug Delivery, Ion Exchange Resin, Resinate, Microencapsulation, Drug Release Kinetics

Published online 12/20/2022, 27 pages

Citation: Bhavana Sampath Kumar, Junaiha Kapoor, Sandra Ravi M, Dileep Francis, Ion Exchange Resins as Carriers for Sustained Drug Release, Materials Research Foundations, Vol. 137, pp 93-119, 2023


Part of the book on Ion Exchange Resins

[1] X. Guo, R.K. Chang, M.A. Hussain, Ion-exchange resins as drug delivery carriers, J. Pharm. Sci. 98 (2009) 3886-3902.
[2] Z. Liu, E.C. Mills, M. Mohseni, B. Barbeau, P.R. Bérubé, Biological ion exchange as an alternative to biological activated carbon for natural organic matter removal: Impact of temperature and empty bed contact time (EBCT), Chemosphere. 288 (2022) 132466.
[3] Z. Liu, M. Haddad, S. Sauvé, B. Barbeau, Alleviating the burden of ion exchange brine in water treatment: From operational strategies to brine management, Water Res. 205 (2021) 117728.
[4] M.T.R. Chikukwa, M. Wesoly, A.B. Korzeniowska, P. Ciosek-Skibinska, R.B. Walker, S.M.M. Khamanga, Assessment of taste masking of captopril by ion-exchange resins using electronic gustatory system, Pharm. Dev. Technol. 25 (2020) 281-289.
[5] V. Anand, R. Kandarapu, S. Garg, Ion-exchange resins: Carrying drug delivery forward, Drug Discov. Today. 6 (2001) 905-914.
[6] HJ Seong, NH. Berhane, K. Haghighi, K. Park, Drug release properties of polymer coated ion-exchange resin complexes: Experimental and theoretical evaluation, J. Pharm. Sci. 96 (2007) 618-632.
[7] J. Siepmann, R.A. Siegel, F. Siepmann, Diffusion Controlled Drug Delivery Systems, in: J. Siepmann, R. Siegel, M. Rathbone, (Eds.) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology, Springer, Boston, MA., 2012, pp. 388-398.
[8] CN Patra, S. Swain, J. Sruti, AP Patro, K.C. Panigrahi, S. Beg, M.E.B. Rao, Osmotic drug delivery systems: basics and design approaches, Recent Pat. Drug Deliv. Formul. 7 (2013) 150-161.
[9] B. Kumari, A. Khansili, P. Phougat, M. Kumar, Comprehensive review of the role of acrylic acid derivative polymers in floating drug delivery systems, Polim. Med. 49 (2019) 71-79.
[10] K. Kumar, N. Dhawan, H. Sharma, S. Vaidya, B. Vaidya, Bioadhesive polymers: a novel tool for drug delivery, Artif. Cells, Nanomedicine, Biotechnol. 42 (2014) 274-283.
[11] Z.M. Hu, S.Y. Liu, H.Y. Yang, C. Huang, Research progress of liposome drug delivery system in stomatology, Chin. J. Stomatol. 56 (2021) 294-300.
[12] S. Adepu, S. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions, Molecules. 26 (19) (2021) 5905.
[13] V. Kumar, V. Bansal, A. Madhavan, M. Kumar, R. Sindhu, M. K. Awasthi, P. Binod, S. Saran, Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches, Bioengineered. 13(2)(2022) 4309-4327.
[14] Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: The past and the future, Adv. Drug Deliv. Rev. 65 (2013) 104-120.
[15] K.R. Reddy, S. Mutalik, S. Reddy, Once-daily sustained-release matrix tablets of nicorandil: Formulation and in vitro evaluation, AAPS PharmSciTech. 4 (2003) 480-488.
[16] B. Sun, M. Zhang, J. Shen, Z. He, P. Fatehi, Y. Ni, Applications of cellulose-based materials in sustained drug delivery systems, Curr. Med. Chem. 26 (2018) 2485-2501.
[17] H. Kojima, K. Yoshihara, T. Sawada, H. Kondo, K. Sako, Extended release of a large amount of highly water-soluble diltiazem hydrochloride by utilizing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG) matrix tablets, Eur. J. Pharm. Biopharm. 70 (2008) 556-562.
[18] C. Loira-Pastoriza, J. Todoroff, R. Vanbever, Delivery strategies for sustained drug release in the lungs, Adv. Drug Deliv. Rev. 75 (2014) 81-91.
[19] M. Norouzi, B. Nazari, D.W. Miller, Injectable hydrogel-based drug delivery systems for local cancer therapy, Drug Discov. Today. 21 (2016) 1835-1849.
[20] Y.H. Yun, B.K. Lee, K. Park, Controlled Drug Delivery: Historical perspective for the next generation, J. Control. Release. 219 (2015) 2-7.
[21] S. Adepu, S. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions, Molecules. 26 (2021) 5905.
[22] K. Park, The Controlled Drug Delivery Systems: Past Forward and Future Back, J. Control. Release. 190 (2014) 3-8.
[23] R.S. Langer, N.A. Peppas, Present and future applications of biomaterials in controlled drug delivery systems, Biomaterials. 2 (1981) 201-214.
[24] S. Sungthongjeen, O. Paeratakul, S. Limmatvapirat, S. Puttipipatkhachorn, Preparation and in vitro evaluation of a multiple-unit floating drug delivery system based on gas formation technique, Int. J. Pharm. 324 (2006) 136-143.
[25] D.K. Karumanchi, Y. Skrypai, A. Thomas, E.R. Gaillard, Rational design of liposomes for sustained release drug delivery of bevacizumab to treat ocular angiogenesis, J. Drug Deliv. Sci. Technol. 47 (2018) 275-282.
[26] D. Mastropietro, K. Park, H. Omidian, Polymers in Oral Drug Delivery, in P. Ducheyne (Ed.), Comprehensive Biomaterials II, Elsevier, Oxford, (2017) 430-444.
[27] J. Brady, T. Dürig, P. I. Lee, J,-X, Li, Polymer Properties and Characterization, in Y. Qiu, Y. Chen, G. G. Z. Zhang, L. Yu, R. V. Mantri (Eds.), Developing Solid Oral Dosage Forms (Second Edition), Academic Press, Boston, (2017) 181-223.
[28] S. D. Alexandratos. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research, Ind. Eng. Chem. Res. 48 (2009) 388-398.
[29] D. Torres, B. Seijo, G. García-Encina, M.J. Alonso, J.L. Vila-Jato, Microencapsulation of ion-exchange resins by interfacial nylon polymerization, Int. J. Pharm. 59 (1990) 9-17.
[30] A.B. Jumde, M.J. Umekar, N.R. Kotagale, Complexation using direct current: novel batch method for drug-resinate preparation, Drug Dev. Ind. Pharm. 39 (2013) 978-984.
[31] S.H. Jeong, K. Park, Drug loading and release properties of ion-exchange resin complexes as a drug delivery matrix, Int. J. Pharm. 361 (2008) 26-32.
[32] S.H. Jeong, K. Park, Simple preparation of coated resin complexes and their incorporation into fast-disintegrating tablets, Arch. Pharm. Res. 33 (2010) 115-123.
[33] M. Gay Moldenhauer, J. Graham Nairn, Formulation parameters affecting the preparation and properties of microencapsulated ion‐exchange resins containing theophylline, J. Pharm. Sci. 79 (1990) 659-666.
[34] M.C. Adeyeye, E. Mwangi, S. Katpally, K. Fujioka, H. Ichikawa, Y. Fukumori, Suspensions of prolonged-release diclofenac-Eudragit® and ion-exchange resin microcapsules: II. Improved dissolution stability, J. Microencapsul. 22 (2005) 353-362.
[35] V. Mohylyuk, K. Patel, N. Scott, C. Richardson, D. Murnane, F. Liu, Wurster fluidized bed coating of microparticles: towards scalable production of oral sustained-release liquid medicines for patients with swallowing difficulties, AAPS PharmSciTech. 21 (2019).
[36] F. Atyabi, H.L. Sharma, H.A.H. Mohammad, J.T. Fell, Controlled drug release from coated floating ion exchange resin beads, J. Control. Release. 42 (1996) 25-28.
[37] R.B. Umamaheshwari, S. Jain, N.K. Jain, A new approach in gastroretentive drug delivery system using cholestyramine, Drug Deliv. 10 (2003) 151-160.
[38] S. Narisawa, M. Nagata, Y. Hirakawa, M. Kobayashi, H. Yoshino, An organic acid-induced sigmoidal release system for oral controlled-release preparations. 2. Permeability enhancement of Eudragit RS coating led by the physicochemical interactions with organic acid, J. Pharm. Sci. 85 (1996) 184-188.
[39] S. Narisawa, M. Nagata, C. Danyoshi, H. Yoshino, K. Murata, Y. Hirakawa, K. Noda, An organic acid-induced sigmoidal release system for oral controlled-release preparations, Pharm. Res. 11 (1994) 111-116.
[40] J. Tamargo, J.Y. Le Heuzey, P. Mabo, Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide, Eur. J. Clin. Pharmacol. 71 (2015) 549-567.
[41] G. Yadav, M. Bansal, N. Thakur, Sargam, P. Khare, Multilayer tablets and their drug release kinetic models for oral controlled drug delivery systems, Middle East J. Sci. Res. 16 (2013) 782-795.
[42] G. Yadav, M. Bansal, N. Thakur, P. Khare, Multilayer Tablets and Their Drug Release Kinetic Models for Oral Controlled Drug Delivery System, Middle-East J. Sci. Res. 16 (2013) 782-795.
[43] R. Wettengel, Theophylline–past present and future, Arzneimittelforschung. 48 (1998) 535-539.
[44] R.I. Ogilvie, Monitoring plasma theophylline concentrations, Ther. Drug Monit. 2 (1980) 111-117.
[45] S. Salatin, J. Barar, M. Barzegar-Jalali, K. Adibkia, M. Alami-Milani, M. Jelvehgari, Formulation and evaluation of Eudragit RL-100 nanoparticles loaded in-situ forming gel for intranasal delivery of Rivastigmine, Adv. Pharm. Bull. 10 (2020) 20.
[46] R.N. Brogden, R.C. Heel, T.M. Speight, G.S. Avery, Amoxicillin injectable: a review of its antibacterial spectrum, pharmacokinetics and therapeutic use, Drugs. 18 (1979) 169-184.
[47] Cuna, M.J. Alonso, D. Torres, Preparation and in vivo evaluation of mucoadhesive microparticles containing amoxycillin-resin complexes for drug delivery to the gastric mucosa, Eur. J. Pharm. Biopharm. 51 (2001) 199-205.
[48] A.R. Silva, R.J. Dinis-Oliveira, Pharmacokinetics and pharmacodynamics of dextromethorphan: clinical and forensic aspects, Drug Metab. Rev. 52 (2020) 258-282.
[49] T.S. Gaginella, J.H. Bauman, Ranitidine hydrochloride, Drug Intell. Clin. Pharm. 17 (1983) 873-885.
[50] S. Khan, A. Guha, P. Yeole, P. Katariya, Strong cation exchange resin for improving physicochemical properties and sustaining release of ranitidine hydrochloride, Indian J. Pharm. Sci. 69 (2007) 626.
[51] Y.H. Cheng, P. Watts, M. Hinchcliffe, R. Hotchkiss, R. Nankervis, N.F. Faraj, A. Smith, S.S. Davis, L. Illum, Development of a novel nasal nicotine formulation comprising an optimal pulsatile and sustained plasma nicotine profile for smoking cessation, J. Control. Release. 79 (2002) 243-254.
[52] H. Jeong, C.S. Lee, J. Lee, J. Lee, H.S. Hwang, M. Lee, K. Na, Hemagglutinin nanoparticulate vaccine with controlled photochemical immunomodulation for pathogenic influenza-specific immunity, Adv. Sci. Weinheim, Baden-Wurttemberg, Ger. 8 (2021).
[53] M. Higaki, T. Takase, R. Igarashi, Y. Suzuki, C. Aizawa, Y. Mizushima, Enhancement of immune response to intranasal influenza HA vaccine by microparticle resin, Vaccine. 16 (1998) 741-745.
[54] M. Takenaga, Y. Serizawa, Y. Azechi, A. Ochiai, Y. Kosaka, R. Igarashi, Y. Mizushima, Microparticle resins as a potential nasal drug delivery system for insulin, J. Control. Release. 52 (1998) 81-87.
[55] J. Wang, Y. Tabata, K. Morimoto, Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats, J. Control. Release. 113 (2006) 31-37.
[56] V. Gote, S. Sikder, J. Sicotte, D. Pal, Ocular Drug Delivery: Present Innovations and Future Challenges, J. Pharmacol. Exp. Ther. 370 (2019) 602-624.
[57] Y. Wei, C. Li, Q. Zhu, X. Zhang, J. Guan, S. Mao, Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: In vitro drug release and in vivo tissue distribution, Int. J. Pharm. 578 (2020) 119184.
[58] D.K. Terp, M.J. Rybak, Ciprofloxacin, Drug Intell. Clin. Pharm. 21 (1987) 568-574.
[59] S.P. Jain, S.P. Shah, N.S. Rajadhyaksha, PSPS Pirthi, P.D. Amin, In situ ophthalmic gel of ciprofloxacin hydrochloride for once a day sustained delivery, Drug Dev. Ind. Pharm. 34 (2008) 445-452.
[60] R. Ramos Alcocer, J.G. Ledezma Rodríguez, A. Navas Romero, J.L. Cardenas Nuñez, V. Rodríguez Montoya, J. Deschamps, J.A. Liviac Ticse, Use of betahistine in the treatment of peripheral vertigo, Acta Otolaryngol. 135 (2015) 1205-1211.
[61] R. Shang, C. Liu, P. Quan, H. Zhao, L. Fang, Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction, Int. J. Pharm. 545 (2018) 163-169.
[62] M.C. Houston, Clonidine hydrochloride, South. Med. J. 75 (1982) 713-721.
[63] H. Liu, X. Xie, C. Chen, C.K. Firempong, Y. Feng, L. Zhao, X. Yin, Preparation and in vitro/in vivo evaluation of a clonidine hydrochloride drug-resin suspension as a sustained-release formulation, Drug Dev. Ind. Pharm. 47 (2021) 394-402.
[64] C.F. Schuler IV, J.M. Montejo, Allergic rhinitis in children and adolescents, Pediatr. Clin. North Am. 66 (2019) 981-993.
[65] Y. Liu, P. Li, R. Qian, T. Sun, F. Fang, Z. Wang, X. Ke, B. Xu, A novel and discriminative method of in vitro disintegration time for preparation and optimization of taste-masked orally disintegrating tablets of carbinoxamine maleate, Drug Dev. Ind. Pharm. 44 (2018) 1317-1327.
[66] Y. Deng, T. Wang, J. Li, W. Sun, H. He, J. Gou, Y. Wang, T. Yin, Y. Zhang, X. Tang, Studies on the in vitro ion exchange kinetics and thermodynamics and in vivo pharmacokinetics of the carbinoxamine-resin complex, Int. J. Pharm. 588 (2020).
[67] V.B. Junyaprasert, G. Manwiwattanakul, Release profile comparison and stability of diltiazem-resin microcapsules in sustained release suspensions, Int. J. Pharm. 352 (2008) 81-91.
[68] A. Kadam, D. Sakarkar, P. Kawtikwar, Development and Evaluation of Oral Controlled release chlorpheniramine-ion exchange resinate suspension, Indian J. Pharm. Sci. 70 (2008) 531.
[69] P.K. Bhoyar, D.M. Biyani, Formulation and in vitro evaluation of sustained release dosage form with taste masking of metformin hydrochloride, Indian J. Pharm. Sci. 72 (2010) 184.
[70] RM okhta. Aman, M.M. ohame. Meshali, G.M. ahmou. Abdelghani, Ion-exchange complex of famotidine: sustained release and taste masking approach of stable liquid dosage form, Drug Discov. Ther. 8 (2014) 268-275.
[71] A. Minocha, D.A. Spyker, Acute overdose with sustained release drug formulations. Perspectives in treatment, Med. Toxicol. 1 (1986) 300-307.
[72] J. Yuan, Y. Gao, X. Wang, H. Liu, X. Che, L. Xu, Y. Yang, Q. Wang, Y. Wang, S. Li, The load and release characteristics on a strong cationic ion-exchange fiber: Kinetics, thermodynamics, and influences, Drug Des. Devel. Ther. 8 (2014) 945-955.
[73] M. Vuorio, J.A. Manzanares, L. Murtomäki, J. Hirvonen, T. Kankkunen, K. Kontturi, Ion-exchange fibers and drugs: A transient study, J. Control. Release. 91 (2003) 439-448.
[74] C. Xin, W. Li-Hong, Y. Yue, G. Ya-Nan, W. Qi-Fang, Y. Yang, L. San-Ming, A novel method to enhance the efficiency of drug transdermal iontophoresis delivery by using complexes of drug and ion-exchange fibers, Int. J. Pharm. 428 (2012) 68-75.
[75] J. Yuan, T. Liu, H. Li, T. Shi, J. Xu, H. Liu, Z. Wang, Q. Wang, L. Xu, Y. Wang, S. Li, Oral sustained-release suspension based on a novel taste-masked and mucoadhesive carrier-ion-exchange fiber, Int. J. Pharm. 472 (2014) 74-81.