Application of Ion Exchange Resins in Protein Separation and Purification

$30.00

Application of Ion Exchange Resins in Protein Separation and Purification

Srijita Basumallick

Separation and purification of proteins obtained from natural sources is a really challenging job. This chapter aims to discuss various aspects of separation and purification of proteins by ion exchange chromatographic method. Emphasis has been given on understanding the basic principles and different factors that govern the efficiency and commercial applications of separation of protein obtained by this method.

Keywords
Affinity Chromatography, Immunoaffinity Chromatography, Gel Filtration or Permeation Chromatography, Buffer Solution, Cation and Anion Exchange Chromatography, Donnan Equilibrium

Published online 12/20/2022, 16 pages

Citation: Srijita Basumallick, Application of Ion Exchange Resins in Protein Separation and Purification, Materials Research Foundations, Vol. 137, pp 39-54, 2023

DOI: https://doi.org/10.21741/9781644902219-3

Part of the book on Ion Exchange Resins

References
[1] R.R. Burgess, A brief practical review of size exclusion chromatography: Rules of thumb, limitations, and troubleshooting, Protein Expr. Purif. 150 (2018) 81-85. https://doi.org/10.1016/j.pep.2018.05.007
[2] S. Fekete, J.L. Veuthey, A. Beck, D. Guillarme, Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products, J. Pharm. Biomed. 130 (2016) 3-18. https://doi.org/10.1016/j.jpba.2016.04.004
[3] E.L. Rodriguez, S. Poddar, S. Iftekhar, K. Suh, A.G. Woolfork, S. Ovbude, A. Pekarek, M. Walters, S. Lott, D.S. Hage, Affinity chromatography: A review of trends and developments over the past 50 years, J. Chromatogr. B. 1157 (2020) 122332. https://doi.org/10.1016/j.jchromb.2020.122332
[4] D. Novick, M. Rubinstein, Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins, Methods Mol. Biol. 820 (2012) 195-214. https://doi.org/10.1007/978-1-61779-439-1_12
[5] S.G. Prapulla, N.G. Karanth, FERMENTATION (INDUSTRIAL) | Recovery of Metabolites, in: C.A. Batt, M.L. Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition), Academic Press, Oxford, 2014, pp. 822-833. https://doi.org/10.1016/B978-0-12-384730-0.00109-9
[6] C. Ó’Fágáin, P.M. Cummins, B.F. O’Connor, Gel-Filtration Chromatography, Methods Mol. Biol.1485 (2017) 15-25. https://doi.org/10.1007/978-1-4939-6412-3_2
[7] E. Stauffer, J.A. Dolan, R. Newman, Gas Chromatography and Gas Chromatography-Mass Spectrometry, in: E. Stauffer, J.A. Dolan, R. Newman (Eds.), Fire Debris Analysis, Academic Press, Burlington, 2008, pp. 235-293. https://doi.org/10.1016/B978-012663971-1.50012-9
[8] D.S. Hage, Affinity Chromatography: A Review of Clinical Applications, Clin. Chem. 45 (1999) 593-615. https://doi.org/10.1093/clinchem/45.5.593
[9] A.D. Attie, R.T. Raines, Analysis of Receptor-Ligand Interactions, J. Chem. Educ.72 (1995) 119-124. https://doi.org/10.1021/ed072p119
[10] J. Staahlberg, B. Joensson, C. Horvath, Combined effect of coulombic and van der Waals interactions in the chromatography of proteins, Anal. Chem. 64 (1992) 3118-3124. https://doi.org/10.1021/ac00048a009
[11] Magdeldin, S., & Moser, A., Affinity Chromatography: Principles and Applications. In (Ed.), Affinity Chromatography. Intech (2012). https://doi.org/10.5772/39087
[12] E. Sahin, A.O. Grillo, M.D. Perkins, C.J. Roberts, Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies, J. Pharm. Sci. 99 (2010) 4830-4848. https://doi.org/10.1002/jps.22198
[13] M. Sorci, G. Belfort, Insulin Oligomers: Detection, Characterization and Quantification Using Different Analytical Methods, in: V.N. Uversky, Y.L. Lyubchenko (Eds.), Bio-nanoimaging, Academic Press, Boston, 2014, pp. 233-245. https://doi.org/10.1016/B978-0-12-394431-3.00021-3
[14] P. DePhillips, I. Lagerlund, J. Färenmark, A. Lenhoff, Effect of Spacer Arm Length on Protein Retention on a Strong Cation Exchange Adsorbent, J. Anal. Chem.76 (2004) 5816-5822. https://doi.org/10.1021/ac049462b
[15] C. Yu, E.J. Novitsky, N.W. Cheng, S.D. Rychnovsky, Exploring Spacer Arm Structures for Designs of Asymmetric Sulfoxide-Containing MS-Cleavable Cross-Linkers, Anal. Chem. 92 (2020) 6026-6033. https://doi.org/10.1021/acs.analchem.0c00298
[16] X. Du, Y. Li, Y.L. Xia, S.M. Ai, J. Liang, P. Sang, X.L. Ji, S.Q. Liu, Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods, Int J Mol Sci. 17 (2016) 1-34. https://doi.org/10.3390/ijms17020144
[17] A.V. Onufriev, E. Alexov, Protonation and pK changes in protein-ligand binding, Q. Rev. Biophys. 46 (2013) 181-209. https://doi.org/10.1017/S0033583513000024
[18] D.A. Annis, N. Nazef, C.C. Chuang, M.P. Scott, H.M. Nash, A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures, J Am Chem Soc. 126 (2004) 15495-15503. https://doi.org/10.1021/ja048365x
[19] H. SchÄGger, Techniques and Basic Operations in Membrane Protein Purification, in: C. Hunte, G. Von Jagow, H. SchÄGger (Eds.) Membrane Protein Purification and Crystallization (Second Edition), Academic Press, San Diego, 2003, pp. 19-53. https://doi.org/10.1016/B978-012361776-7/50003-6
[20] A. Staby, J.H. Jacobsen, R.G. Hansen, U.K. Bruus, I.H. Jensen, Comparison of chromatographic ion-exchange resins: V. Strong and weak cation-exchange resins, J. Chromatogr. A 1118 (2006) 168-179. https://doi.org/10.1016/j.chroma.2006.03.116
[21] W.H. Höll, WATER TREATMENT | Anion Exchangers: Ion Exchange, in: I.D. Wilson (Ed.) Encyclopedia of Separation Science, Academic Press, Oxford, 2000, pp. 4477-4484. https://doi.org/10.1016/B0-12-226770-2/04241-1
[22] A.V. Zatirakha, A.D. Smolenkov, A.V. Pirogov, P.N. Nesterenko, O.A. Shpigun, Preparation and characterisation of anion exchangers with dihydroxy-containing alkyl substitutes in the quaternary ammonium functional groups, J. Chromatogr. A. 1323 (2014) 104-114. https://doi.org/10.1016/j.chroma.2013.11.013
[23] G.H. Luttrell, C. More, C.T. Kenner, Effect of pH and ionic strength on ion exchange and chelating properties of an iminodiacetate ion exchange resin with alkaline earth ions, J. Anal. Chem. 43 (1971) 1370-1375. https://doi.org/10.1021/ac60305a048
[24] P.M. Cummins, O. Dowling, B.F. O’Connor, Ion-exchange chromatography: basic principles and application to the partial purification of soluble mammalian prolyl oligopeptidase, Methods Mol. Biol. 681 (2011) 215-228. https://doi.org/10.1007/978-1-60761-913-0_12
[25] D.D. Clark, D.J. Edwards, Virtual protein purification: A simple exercise to introduce ph as a parameter that affects ion exchange chromatography, Biochem Mol Biol Educ. 46 (2018) 91-97. https://doi.org/10.1002/bmb.21082
[26] T. Ahamed, B.K. Nfor, P.D. Verhaert, G.W. van Dedem, L.A. van der Wielen, M.H. Eppink, E.J. van de Sandt, M. Ottens, pH-gradient ion-exchange chromatography: an analytical tool for design and optimization of protein separations, J. Chromatogr. A. 1164 (2007) 181-188. https://doi.org/10.1016/j.chroma.2007.07.010
[27] M. Kosanović, B. Milutinović, S. Goč, N. Mitić, M. Janković, Ion-exchange chromatography purification of extracellular vesicles, Biotechnol. J. 63 (2017) 65-71. https://doi.org/10.2144/000114575
[28] M.V. Srikanth, S.A. Sunil, N.S. Rao, M.U. Uhumwangho, K.V. Ramana Murthy, Ion-Exchange Resins as Controlled Drug Delivery Carriers, J. Sci. Res. 2 (2010) 597. https://doi.org/10.3329/jsr.v2i3.4991
[29] S.M. Hosseini, S.S. Madaeni, A. Reza, Preparation and characterization of ABS/HIPS heterogeneous cation exchange membranes with various blend ratios of polymer binder, J. Membr. Sci. 351 (2010) 178-188. https://doi.org/10.1016/j.memsci.2010.01.045
[30] T. Bruch, H. Graalfs, L. Jacob, C. Frech, Influence of surface modification on protein retention in ion-exchange chromatography. Evaluation using different retention models, J. Chromatogr. A. 1216 (2009) 919-926. https://doi.org/10.1016/j.chroma.2008.12.008
[31] H.P. Gregor, Gibbs-Donnan Equilibria in Ion Exchange Resin Systems, J. Am. Chem. Soc. 73 (1951) 642-650. https://doi.org/10.1021/ja01146a042