Hybrid Nanomaterials: Historical Developments, Classification and Biomedical Applications

$30.00

Hybrid Nanomaterials: Historical Developments, Classification and Biomedical Applications

Jarin Ibedita Edi, Abdul Muhaymin, Md. Abu Bin Hasan Susan

Hybrid nanomaterials (HNs) have exceptional physical and chemical properties and combine superior qualities of both inorganic and organic materials to exploit them to desirable chemistry through imposing multifunctionality in a single material. Strategies of synthesis of HNs involve the fabrication of components, either organic or inorganic, through the insertion of molecules or nano-objects or polymerization of precursors. The interconnected porous network of HNs also enables a range of applications. In this chapter, we have discussed historical development, strategies of synthesis, and, classification of HNs with emphasis on advancement for biomedical applications.

Keywords
Hybrid Nanomaterials, Classification, Historical Development, Strategies for Synthesis, Biomedical Applications

Published online 11/15/2022, 26 pages

Citation: Jarin Ibedita Edi, Abdul Muhaymin, Md. Abu Bin Hasan Susan, Hybrid Nanomaterials: Historical Developments, Classification and Biomedical Applications, Materials Research Foundations, Vol. 135, pp 152-177, 2023

DOI: https://doi.org/10.21741/9781644902172-7

Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

References
[1] P. Gómez-Romero, C. Sanchez, Functional hybrid materials, John Wiley & Sons, 2006.
[2] M.R. Rashid, F. Afroze, S., Ahmed, M.S. Miran, M.A.B.H. Susan, Control of the porosity and morphology of ordered mesoporous silica by varying calcination conditions, Materials Today: Proceedings 15 (2019) 546-554. https://doi.org/10.1016/j.matpr.2019.04.119
[3] M. Khair, M.R. Rashid, S. Ahmed, M.A.B.H. Susan, Silica fillers for enhancement of dielectric properties of poly(vinylidene fluoride) and its copolymer, Materials Today: Proceedings 29 (2020) 1239-1245. https://doi.org/10.1016/j.matpr.2020.05.653
[4] M.S. Islam, M.S. Miran, M.Y.A. Mollah, M.M. Rahman, M.A.B.H. Susan, Polyaniline-silica composite materials: Influence of silica content on the thermal and thermodynamic properties, J. Nanostructured Polym. Nanocomposites 9 (2013) 83-89.
[5] K. Sayadi, A. Rahdar, M.R. Hajinezhad, S. Nikazar, M.A.B.H. Susan, Atorvastatin-loaded SBA-16 nanostructures: Synthesis, physical characterization, and biochemical alterations in hyperlipidemic rats, J. Mol Structure1202 (2020) 127296. https://doi.org/10.1016/j.molstruc.2019.127296
[6] A.M.M. Hasan, M.A. Hasan, A. Reza, M.M. Islam, M.A.B.H. Susan, Carbon dots as nano-modules for energy conversion and storage, Materials Today Commun. 29 (2021) 102732. https://doi.org/10.1016/j.mtcomm.2021.102732
[7] S.S., Satter, M. Hoque, M.M. Rahman, M.Y.A. Mollah, M.A.B.H. Susan, An approach towards synthesis and characterization of ZnO@Ag core@shell nanoparticles in water-in-oil microemulsion, RSC. Adv. 4 (2014) 20612-20615. https://doi.org/10.1039/C4RA01046A
[8] S. Mahmud, S.S. Satter, A.K. Singh, M.M. Rahman, M.Y.A., Mollah, M.A.B.H. Susan, Tailored engineering of bimetallic plasmonic Au@Ag core@shell nanoparticles, ACS Omega 4 (2019) 18061-18075. https://doi.org/10.1021/acsomega.9b01897
[9] M.K. Rahman, G. Aiba, M.A.B.H. Susan, Y. Sasaya, K. Ohta, M. Watanabe, Synthesis, characterization, and copolymerization of a series of novel acid monomers based on sulfonimides for proton conducting membranes, Macromolecules 37 (2004) 5572-5577. https://doi.org/10.1021/ma0498058
[10] A. Taher, M.A.B.H. Susan, N. Begum, I-M. Lee, Amine-functionalized metal-organic framework-based Pd nanoparticles: Highly efficient multifunctional catalysts for base-free aerobic oxidation of different alcohols, New J. Chem. 44 (2020) 19113-19121. https://doi.org/10.1039/D0NJ04138F
[11] M.S. Saveleva, K. Eftekhari, A. Abalymov, T.E.L. Douglas, D. Volodkin, B.V. Parakhonskiy, A.G. Skirtach, Hierarchy of hybrid materials- The place of inorganics-in-organics in it, their composition and applications, Frontiers in Chemistry 7 (2019) 179. https://doi.org/10.3389/fchem.2019.00179
[12] C. Sanchez, P. Belleville, M. Popall, L. Nicole, Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market, Chem. Soc. Rev. 40 (2011) 696-753. https://doi.org/10.1039/c0cs00136h
[13] P.N. Catalano, R.G. Chaudhary, M.F. Desimone, P.L. Santo, A Survey on Analytical methods for green synthesized nanomaterials. Curr. Pharmaceu Biotech, 22 (2021) 813-837. https://doi.org/10.2174/1389201022666210104122349
[14] C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites, J. Mat. Chem. 15 (2005) 3559-3592. https://doi.org/10.1039/b509097k
[15] A. Taubert, F. Leroux, P. Rabu, V. de Zea Bermudez, Advanced hybrid nanomaterials, Beilstein J. Nanotechnology 10 (2019) 2563-2567. https://doi.org/10.3762/bjnano.10.247
[16] A. Taubert, F. Leroux, P. Rabu, V. de Zea Bermudez, Advanced hybrid nanomaterials, Beilstein-Institut, 2019. https://doi.org/10.3762/bjnano.10.247
[17] V.P. Ananikov, Organic-inorganic hybrid nanomaterials, Nanomaterials 9 (2019) 1197. https://doi.org/10.3390/nano9091197
[18] M. Aksit, V. Altstädt, Hybrid materials-historical perspective and current trends, COJ Rev Res. 2 (2020) .1-17
[19] S. Somiya, Handbook of advanced ceramics: materials, applications, processing, and properties, Academic Press, 2013. https://doi.org/10.1016/B978-0-12-385469-8.03001-X
[20] M.S. Umekar, A.K. Potbhare, G.S. Bhusari, M.F. Desimone, R.G. Chaudhary, Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications, Current Pharmaceutical Biotechnology, 22 (2021) 1759 -1781. https://doi.org/10.2174/1389201022666201231115826
[21] R. Vargas-Bernal, Hybrid nanomaterials, hybrid nanomaterials- Flexible electronics materials, IntechOpen, 2020. https://doi.org/10.5772/intechopen.83326
[22] C. Auschra, R. Stadler, New ordered morphologies in ABC triblock copolymers, Macromolecules 26 (1993) 2171-2174. https://doi.org/10.1021/ma00061a005
[23] M. Faustini, L. Nicole, E. Ruiz‐Hitzky, C. Sanchez, History of organic-inorganic hybrid materials: prehistory, art, science, and advanced applications, Advanced Functional Materials 28 (2018) 1704158. https://doi.org/10.1002/adfm.201704158
[24] M. Nanko, Definitions and categories of hybrid materials, AZojomo 6 (2009) 1-8.
[25] F. Tanasa, M. Zanoaga, Polymer based hybrid materials for aerospace applications, Scientific Research & Education in the Air Force-AFASES 1 (2012).
[26] G. Kickelbick, Introduction to hybrid materials, Hybrid Materials 1 (2007) 2. https://doi.org/10.1002/9783527610495.ch1
[27] J.D. Wright, N. Sommerdijk, Sol-Gel materials: Their chemistry and biological properties, Taylor & Francis Group, 2000.
[28] A. Mehmood, H. Ghafar, S. Yaqoob, D. Gohar, B. Ahmad, Mesoporous silica nanoparticles: A review, J. Developing Drugs 06 (2017) 174-188. https://doi.org/10.4172/2329-6631.1000174
[29] C. Rajani, P. Borisa, T. Karanwad, Y. Borade, V. Patel, K. Rajpoot, R.K. Tekade, 7 – Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier, in: A. Chauhan, H. Kulhari (Eds.), Pharmaceutical Applications of Dendrimers, Elsevier 2020, pp. 151-198. https://doi.org/10.1016/B978-0-12-814527-2.00007-X
[30] E. Ilhan-Ayisigi, O. Yesil-Celiktas, Silica-based organic-inorganic hybrid nanoparticles and nanoconjugates for improved anticancer drug delivery, Engineering in Life Sciences 18 (2018) 882-892. https://doi.org/10.1002/elsc.201800038
[31] I. Miletto, E. Gianotti, M.-H. Delville, G. Berlier, Silica-based organic-inorganic hybrid nanomaterials for optical bioimaging, in: D. Marie-Hélène, T. Andreas (Eds.), Hybrid organic-inorganic interfaces : towards advanced functional materials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2018, pp. 729-765. https://doi.org/10.1002/9783527807130.ch17
[32] G. Pan, T.-T. Jia, Q.-X. Huang, Y.-Y. Qiu, J. Xu, P.-H. Yin, T. Liu, Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy, Colloids Surf B Biointerfaces 159 (2017) 375-385. https://doi.org/10.1016/j.colsurfb.2017.08.013
[33] L. Pasqua, I.E. De Napoli, M. De Santo, M. Greco, E. Catizzone, D. Lombardo, G. Montera, A. Comandè, A. Nigro, C. Morelli, A. Leggio, Mesoporous silica-based hybrid materials for bone-specific drug delivery, Nanoscale Advances 1 (2019) 3269-3278. https://doi.org/10.1039/C9NA00249A
[34] X. Hao, X. Hu, C. Zhang, S. Chen, Z. Li, X. Yang, H. Liu, G. Jia, D. Liu, K. Ge, X.-J. Liang, J. Zhang, Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite, ACS Nano 9 (2015) 9614-9625. https://doi.org/10.1021/nn507485j
[35] A.M. Wagner, J.M. Knipe, G. Orive, N.A. Peppas, Quantum dots in biomedical applications, Acta Biomaterialia 94 (2019) 44-63. https://doi.org/10.1016/j.actbio.2019.05.022
[36] N. Hong, Introduction to nanomaterials: Basic properties, synthesis, and characterization, 2019, pp. 1-19. https://doi.org/10.1016/B978-0-12-813934-9.00001-3
[37] N.K. Bakirhan, S.A. Ozkan, Chapter 28 – Quantum dots as a new generation nanomaterials and their electrochemical applications in pharmaceutical industry, in: C. M. Hussain (Ed.), Handbook of nanomaterials for industrial applications, Elsevier, 2018, pp. 520-529. https://doi.org/10.1016/B978-0-12-813351-4.00029-8
[38] M. Fernandez, A. Urvoas, P. Even-Hernandez, A. Burel, C. Mériadec, F. Artzner, T. Bouceba, P. Minard, E. Dujardin, V. Marchi, Hybrid gold nanoparticle-quantum dot self-assembled nanostructures driven by complementary artificial proteins, Nanoscale 12(2020) 4612-4621. https://doi.org/10.1039/C9NR09987E
[39] U. Hasegawa, S.M. Nomura, S.C. Kaul, T. Hirano, K. Akiyoshi, Nanogel-quantum dot hybrid nanoparticles for live cell imaging, Biochem. Biophys. Res. Commun. 331 (2005) 917-21. https://doi.org/10.1016/j.bbrc.2005.03.228
[40] S. Wadhwa, A.T. John, A. Mathur, M. Khanuja, G. Bhattacharya, S.S. Roy, S.C. Ray, Engineering of luminescent graphene quantum dot-gold (GQD-Au) hybrid nanoparticles for functional applications, MethodsX 7 (2020) 100963. https://doi.org/10.1016/j.mex.2020.100963
[41] A.J. Shuhendler, P. Prasad, H.-K.C. Chan, C.R. Gordijo, B. Soroushian, M. Kolios, K. Yu, P.J. O’Brien, A.M. Rauth, X.Y. Wu, Hybrid quantum dot−fatty ester stealth nanoparticles: Toward clinically relevant in vivo optical imaging of deep tissue, ACS Nano 5 (2011) 1958-1966. https://doi.org/10.1021/nn103024b
[42] F. Demir Duman, R.S. Forgan, Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine, J. Mat. Chem. B 9 (2021) 3423-3449. https://doi.org/10.1039/D1TB00358E
[43] D. Zhao, W. Zhang, Z.-H. Wu, H. Xu, Nanoscale metal−organic frameworks and their nanomedicine applications, Frontiers in Chemistry 9 (2022) 834171. https://doi.org/10.3389/fchem.2021.834171
[44] W.J. Rieter, K.M.L. Taylor, H. An, W. Lin, W. Lin, Nanoscale metal−organic frameworks as potential multimodal contrast enhancing agents, J. Am. Chem. Soc.128 (2006) 9024-9025. https://doi.org/10.1021/ja0627444
[45] K. Ni, G. Lan, S.S. Veroneau, X. Duan, Y. Song, W. Lin, Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy, Nature Commun. 9 (2018) 4321. https://doi.org/10.1038/s41467-018-06655-7
[46] A. Ali, H. Zafar, M. Zia, I. Ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl. 9 (2016) 49-67. https://doi.org/10.2147/NSA.S99986
[47] M.P. Alvarez-Berríos, N. Sosa-Cintron, M. Rodriguez-Lugo, R. Juneja, J.L. Vivero-Escoto, Hybrid Nanomaterials Based on Iron Oxide Nanoparticles and Mesoporous Silica Nanoparticles: Overcoming Challenges in Current Cancer Treatments, J. Chem. 2016 (2016) 2672740. https://doi.org/10.1155/2016/2672740
[48] C. Hoskins, Y. Min, M. Gueorguieva, C. McDougall, A. Volovick, P. Prentice, Z. Wang, A. Melzer, A. Cuschieri, L. Wang, Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application, J. Nanobiotech. 10(1) (2012) 27. https://doi.org/10.1186/1477-3155-10-27
[49] Y. Hu, S. Mignani, J.-P. Majoral, M. Shen, X. Shi, Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy, Chem. Soc. Rev. 47(5) (2018) 1874-1900. https://doi.org/10.1039/C7CS00657H