Carbon Nanomaterials and Their Applications

$30.00

Carbon Nanomaterials and Their Applications

Neksumi Musa, Sushmita Banerjee, N.B. Singh, Usman Lawal Usman

Modern science and technology centred on carbon-based nanomaterials are changing at a fast pace, with the potential to replace or complement current systems. Carbon-based materials that can be produced and characterised at the nanoscale have become a cornerstone in nanotechnology. The morphologies and topographies of these carbon compounds can be quite diverse. As the well-known families of fullerenes and carbon nanotubes demonstrate, they can have hollow or filled frameworks and can assume a variety of forms. In this chapter, the synthesis, types, applications (water purification, bio-medical, gas sensors, and transport materials in plant breeding) and some impacts of nano-carbon materials such as nano-spheres, nano-tubes, nano-fibres, and helices are discussed.

Keywords
Allotropes, Applications, Carbon, Nanomaterials, Nanoparticles

Published online 11/15/2022, 32 pages

Citation: Neksumi Musa, Sushmita Banerjee, N.B. Singh, Usman Lawal Usman, Carbon Nanomaterials and Their Applications, Materials Research Foundations, Vol. 135, pp 40-71, 2023

DOI: https://doi.org/10.21741/9781644902172-3

Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

References
[1] G. Zhan, J. Huang, M. Du, I. Abdul-Rauf, Y. Ma, and Q. Li, “Green synthesis of Au-Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract,” Mater. Lett. 65 (2011) 2989-2991. https://doi.org/10.1016/j.matlet.2011.06.079
[2] T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, and H. M. N. Iqbal, “Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment,” Environment International. 122 (2019) 52-66. https://doi.org/10.1016/j.envint.2018.11.038
[3] M. Q. Fan, F. Xu, and L. X. Sun, “Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water,” Int. J. Hydrogen Energy, (2007) https://doi.org/10.1016/j.ijhydene.2006.12.020
[4] M. S. Bakshi, “How Surfactants Control Crystal Growth of Nanomaterials,” Cryst. Growth Des., vol. 16, no. 2, pp. 1104-1133, 2016, doi: 10.1021/acs.cgd.5b01465. https://doi.org/10.1021/acs.cgd.5b01465
[5] K. Mukhopadhyay, A. Ghosh, S. K. Das, B. Show, P. Sasikumar, and U. Chand Ghosh, “Synthesis and characterisation of cerium(IV)-incorporated hydrous iron(III) oxide as an adsorbent for fluoride removal from water,” RSC Adv.7 (2017) 26037-26051 https://doi.org/10.1039/C7RA00265C
[6] W. Zhai, N. Srikanth, L. B. Kong, and K. Zhou, “Carbon nanomaterials in tribology,” Carbon N. Y. 119 (2017) 150-171 https://doi.org/10.1016/j.carbon.2017.04.027
[7] V. L. Pandey, S. Mahendra Dev, and U. Jayachandran, “Impact of agricultural interventions on the nutritional status in South Asia: A review,” Food Policy. 2016. https://doi.org/10.1016/j.foodpol.2016.05.002
[8] M. Asase, E. K. Yanful, M. Mensah, J. Stanford, and S. Amponsah, “Comparison of municipal solid waste management systems in Canada and Ghana: A case study of the cities of London, Ontario, and Kumasi, Ghana,” Waste Management. 2009. https://doi.org/10.1016/j.wasman.2009.06.019
[9] K. RI, “No TitleΕΛΕΝΗ,” UU Kesehat. 2009, no. 1, 2009.
[10] A. M. Pereyra, M. R. Gonzalez, V. G. Rosato, and E. I. Basaldella, “A-type zeolite containing Ag+/Zn2+ as an inorganic antifungal for waterborne coating formulations,” Prog. Org. Coatings, 2014 https://doi.org/10.1016/j.porgcoat.2013.09.008
[11] M. Yadav, S. Chatterji, S. K. Gupta, and G. Watal, “Innovare Academic Sciences PRELIMINARY PHYTOCHEMICAL SCREENING OF SIX MEDICINAL PLANTS USED IN TRADITIONAL MEDICINE,” vol. 6, no. 5, 2014.
[12] Y. Long et al., “Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis,” Genetics, 177 (2007) 2433-2444 https://doi.org/10.1534/genetics.107.080705
[13] R. K. Thines, N. M. Mubarak, S. Nizamuddin, J. N. Sahu, E. C. Abdullah, and P. Ganesan, “Application potential of carbon nanomaterials in water and wastewater treatment: A review,” J. Taiwan Inst. Chem. Eng 72 (2017) 116-133 https://doi.org/10.1016/j.jtice.2017.01.018
[14] A. Keshav Krishna and K. Rama Mohan, “Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India,” Environ. Earth Sci., 2016, https://doi.org/10.1007/s12665-015-5151-7
[15] U. Kumar, M. Kumar, S. Sankar, and R. Kishore, “Removal of As ( V ) from aqueous solution by Ce-Fe bimetal mixed oxide Journal of Environmental Chemical Engineering Removal of As ( V ) from aqueous solution by Ce-Fe bimetal mixed oxide,” Biochem. Pharmacol. 4 (2016) 2892-2899 https://doi.org/10.1016/j.jece.2016.05.041
[16] S. Sachan and S. Chaurasia, “Bio-medical waste and its management,” Indian J. Environ. Prot. 26 (2006) 255-259
[17] M. F. Ourique, P. V. F. Sousa, A. F. Oliveira, and R. P. Lopes, “Comparative study of the direct black removal by Fe, Cu, and Fe/Cu nanoparticles,” Environ. Sci. Pollut. Res., 235 (2018) 749-756
[18] J. Yadav, “Fullerene : Properties, Synthesis and Application,” vol. 6 (2017) 1-6.
[19] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “Kroto Et Al 1985,” Nature, vol. 318, pp. 162-163. https://doi.org/10.1038/318162a0
[20] 杨洋等 et al., “Research on the Complete Set of Polysaccharide Extracting Equipment from Edible Fungi,” Nanoscale, 3(1) (2022) 95-120
[21] T. Sugai, H. Omote, S. Bandow, N. Tanaka, and H. Shinohara, “Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge,” J. Chem. Phys. 112, (2000) 6000-6005 https://doi.org/10.1063/1.481172
[22] Z. M. Dang, M. S. Zheng, and J. W. Zha, “1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications,” Small, 12, (2016) 1688-1701, https://doi.org/10.1002/smll.201503193
[23] P. Pandey and M. Dahiya, “Carbon nanotubes: Types, methods of preparation and applications,” Int. J. Pharm. Sci. Res., 6 (2016) 15-21.
[24] H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Lett., 8 (2008) 1577-1585 https://doi.org/10.1021/nl072969s
[25] R. P. Feazell, N. Nakayama-Ratchford, H. Dai, and S. J. Lippard, “Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design,” J. Am. Chem. Soc., 129 (2007) 8438-8439 https://doi.org/10.1021/ja073231f
[26] L. Thi Mai Hoa, “Characterization of multi-walled carbon nanotubes functionalized by a mixture of HNO3/H2SO4,” Diam. Relat. Mater., 89 (2018) 43-51 https://doi.org/10.1016/j.diamond.2018.08.008
[27] T. Arunkumar, R. Karthikeyan, R. Ram Subramani, K. Viswanathan, and M. Anish, “Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs),” Int. J. Ambient Energy, 41 (2020) 452-456 https://doi.org/10.1080/01430750.2018.1472657
[28] M. Endo, T. Hayashi, Y. A. Kim, and H. Muramatsu, “Development and application of carbon nanotubes,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 45, (2006) 4883-4892 https://doi.org/10.1143/JJAP.45.4883
[29] A. Naqi, N. Abbas, N. Zahra, A. Hussain, and S. Q. Shabbir, “Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials,” J. Mater. Res. Technol. 8, (2019) 1203-1211 https://doi.org/10.1016/j.jmrt.2018.09.006
[30] T. Basu, K. Gupta, and U. C. Ghosh, “Performances of As(V) adsorption of calcined (250°C) synthetic iron(III)-aluminum(III) mixed oxide in the presence of some groundwater occurring ions,” Chem. Eng. J., 2012 https://doi.org/10.1016/j.cej.2011.12.083
[31] S. R. Mishra and M. Ahmaruzzaman, “Cerium oxide and its nanocomposites: Structure, synthesis, and wastewater treatment applications,” Mater. Today Commun., 28 (2021) 102562 https://doi.org/10.1016/j.mtcomm.2021.102562
[32] T. P. Wagner, “Shared responsibility for managing electronic waste: A case study of Maine, USA,” Waste Manag., 2009 https://doi.org/10.1016/j.wasman.2009.06.015
[33] R. Soni, “Urban Solid Waste Management In India,” SSRN Electron. J., (2019) https://doi.org/10.2139/ssrn.3463653
[34] Q. Qin, L. He, C. Li, and Y. Zang, “Research on Springback Defects in Incremental Forming of Cu-Al Bimetal,” Zhongguo Jixie Gongcheng/China Mech. Eng., (2021) 2-46
[35] L. Basso, M. Cazzanelli, M. Orlandi, and A. Miotello, “Nanodiamonds: Synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space,” Appl. Sci., 10 (2020) 1-28 https://doi.org/10.3390/app10124094
[36] Y. H. Tee, E. Grulke, and D. Bhattacharyya, “Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water,” Ind. Eng. Chem. Res., 2005 https://doi.org/10.1021/ie050086a
[37] H. He, L. A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, and C. Pham-Huy, “Carbon nanotubes: Applications in pharmacy and medicine,” Biomed Res. Int.7 (2013) https://doi.org/10.1155/2013/578290
[38] F. H. Hussein, B. S. Hasan, M. B. Mageed, Z. H. Nafaee, and G. J. Mohammed, “Pharmaceutical Application of Carbon Nanotubes Synthesized by Flame Fragments Deposition Method,” J. Environ. Anal. Chem. 4 (2017) 1-2 https://doi.org/10.4172/2380-2391.1000e115
[39] S. P. Gautam, “Carbon Nanotubes: Exploring Intrinsic Medicinal Activities and Biomedical Applications,” Open Access J. Oncol. Med. 3 (2019) 230-232 https://doi.org/10.32474/OAJOM.2019.03.000152
[40] M. Thiruvengadam et al., “Recent insights and multifactorial applications of carbon nanotubes,” Micromachines., 12 (2021) 243-270 https://doi.org/10.3390/mi12121502
[41] B. Adsorption and L. K. Shrestha, “High Surface Area Nanoporous Activated Carbons Materials,” 2022.
[42] A. K. Prajapati and M. K. Mondal, “Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms,” Korean J. Chem. Eng., 36 (2019) 1900-1914 https://doi.org/10.1007/s11814-019-0376-x
[43] H. Xu et al., “Nanoporous activated carbon derived from rice husk for high-performance supercapacitor,” J. Nanomater., 4 (2014) 1-7 https://doi.org/10.1155/2014/714010
[44] S. Pathan, N. Pandita, and N. Kishore, “Acid functionalized-nanoporous carbon/MnO2 composite for removal of arsenic from the aqueous medium,” Arab. J. Chem., 12 (2019) 5200-5211 https://doi.org/10.1016/j.arabjc.2016.12.011
[45] I. Ali, O. M. L. Alharbi, A. Tkachev, E. Galunin, A. Burakov, and V. A. Grachev, “Water treatment by new-generation graphene materials: hope for bright future,” Environ. Sci. Pollut. Res., 25 (8), (2018) 7315-7329 https://doi.org/10.1007/s11356-018-1315-9
[46] P. B. Pawar, S. Saxena, D. K. Badhe, R. P. Chaudhary, and S. Shukla, “3D oxidized graphene frameworks for efficient nano sieving,” Sci. Rep., 6 (2016) 345-370 https://doi.org/10.1038/srep21150
[47] M. R. Gandhi, S. Vasudevan, A. Shibayama, and M. Yamada, “Graphene and Graphene-Based Composites: A Rising Star in Water Purification – A Comprehensive Overview,” ChemistrySelect, vol. 1(15), (2016) 4358-4385, https://doi.org/10.1002/slct.201600693
[48] Z. Wang, D. Shen, C. Wu, and S. Gu, “State-of-the-art on the production and application of carbon nanomaterials from biomass,” Green Chem., vol. 20, no. 22, pp. 5031-5057, 2018, doi: 10.1039/c8gc01748d. https://doi.org/10.1039/C8GC01748D
[49] S. Khaliha et al., “Defective graphene nanosheets for drinking water purification: Adsorption mechanism, performance, and recovery,” FlatChem, vol. 29, no. July, p. 100283, 2021, doi: 10.1016/j.flatc.2021.100283. https://doi.org/10.1016/j.flatc.2021.100283
[50] K. P. Loh, D. Ho, G. N. C. Chiu, D. T. Leong, G. Pastorin, and E. K. H. Chow, “Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy,” Adv. Mater., vol. 30, no. 47, pp. 1-21, 2018, doi: 10.1002/adma.201802368. https://doi.org/10.1002/adma.201802368
[51] D. Passeri et al., “Biomedical applications of nanodiamonds: An overview,” J. Nanosci. Nanotechnol., vol. 15, no. 2, pp. 972-988, 2015, doi: 10.1166/jnn.2015.9734. https://doi.org/10.1166/jnn.2015.9734
[52] E. Perevedentseva, Y. C. Lin, M. Jani, and C. L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine, vol. 8, no. 12, pp. 2041-2060, 2013, doi: 10.2217/nnm.13.183. https://doi.org/10.2217/nnm.13.183
[53] N. Prabhakar and J. M. Rosenholm, “Nanodiamonds for advanced optical bioimaging and beyond,” Curr. Opin. Colloid Interface Sci., vol. 39, no. March, pp. 220-231, 2019, doi: 10.1016/j.cocis.2019.02.014. https://doi.org/10.1016/j.cocis.2019.02.014
[54] A. I. Shames et al., “Magnetic Resonance Study of Nanodiamonds,” Synth. Prop. Appl. Ultrananocrystalline Diam., pp. 271-282, 2005, doi: 10.1007/1-4020-3322-2_21. https://doi.org/10.1007/1-4020-3322-2_21
[55] B. Pei, W. Wang, N. Dunne, and X. Li, Applications of carbon nanotubes in bone tissue regeneration and engineering: Superiority, concerns, current advancements, and prospects, vol. 9, no. 10. 2019. doi: 10.3390/nano9101501. https://doi.org/10.3390/nano9101501
[56] L. G. Delogu et al., “Ex vivo impact of functionalized carbon nanotubes on human immune cells,” Nanomedicine, vol. 7, no. 2, pp. 231-243, 2012, doi: 10.2217/nnm.11.101. https://doi.org/10.2217/nnm.11.101
[57] R. L. Garnica-Gutiérrez et al., “Effect of functionalized carbon nanotubes and their citric acid polymerization on mesenchymal stem cells in vitro,” J. Nanomater., vol. 2018, 2018, doi: 10.1155/2018/5206093. https://doi.org/10.1155/2018/5206093
[58] J. Huang, Y. Liu, and T. You, “Carbon nanofiber-based electrochemical biosensors: A review,” Anal. Methods, vol. 2, no. 3, pp. 202-211, 2010, doi: 10.1039/b9ay00312f. https://doi.org/10.1039/b9ay00312f
[59] C. Nanotube, C. N. T. Biosensors, D. C. Ferrier, and K. C. Honeychurch, “Carbon Nanotube (CNT)-Based Biosensors,” pp. 1-33, 2021.
[60] V. Vamvakaki and N. A. Chaniotakis, “Carbon nanostructures as transducers in biosensors,” Sensors Actuators, B Chem., vol. 126, (2007) 193-197 https://doi.org/10.1016/j.snb.2006.11.042
[61] K. Balasubramanian and M. Burghard, “Biosensors based on carbon nanotubes,” Anal. Bioanal. Chem., 385 (2006) 452-468 https://doi.org/10.1007/s00216-006-0314-8
[62] S. K. Verma, A. K. Das, S. Gantait, V. Kumar, and E. Gurel, “Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons,” Sci. Total Environ., 667 (2019) 485-499 https://doi.org/10.1016/j.scitotenv.2019.02.409
[63] R. Szőllősi, Á. Molnár, S. Kondak, and Z. Kolbert, “Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. phytotoxicity,” Plants, (2020) 1-30 https://doi.org/10.3390/plants9121745
[64] C. Science, N. Crop, and D. Submitted, Analysis of phytotoxicity and plant growth stimulation by multi-walled carbon nanotubes; Nanomaterials,11(10) (2021) 678-690
[65] S. Park, K. S. Choi, S. Kim, Y. Gwon, and J. Kim, “Graphene oxide-assisted promotion of plant growth and stability,” Nanomaterials, 10 (2020) 1-11 https://doi.org/10.3390/nano10040758
[66] F. Zhao et al., “Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays l.),” Nanomaterials,11(10) (2021) 678-690 https://doi.org/10.3390/nano11102717
[67] S. Park et al., “Graphene : A new technology for agriculture Grafeno : Uma nova tecnologia para a agricultura Grafeno : Una nueva tecnología para la agricultura,” Chem. Soc. Rev. 10(11), (2021) 1-11
[68] Z. Peng et al., “Advances in the application, toxicity and degradation of carbon nanomaterials in the environment: A review,” Environ. Int., 134 (2019)105298 https://doi.org/10.1016/j.envint.2019.105298
[69] Y. Li et al., “A review on the effects of carbon dots in plant systems,” Mater. Chem. Front., 4(2), (2020) 437-448 https://doi.org/10.1039/C9QM00614A
[70] N. E. Mahmoud and R. M. Abdelhameed, “Superiority of modified graphene oxide for enhancing the growth, yield, and antioxidant potential of pearl millet (Pennisetum glaucum L.) under salt stress,” Plant Stress, 2 (2021) 100025 https://doi.org/10.1016/j.stress.2021.100025