Nanoparticles Incorporated Soy Protein Isolate for Emerging Applications in Medical and Biomedical Sectors


Nanoparticles Incorporated Soy Protein Isolate for Emerging Applications in Medical and Biomedical Sectors

Priya Rani, Priyaragini Singh, Abhay Pandit, Rakesh Kumar

Proteins are deemed as ideal material for nanoparticles preparation and incorporation. Soy protein isolate (SPI) is chosen as matrix for fabrication of bionanocomposite materials because of versatile functional groups offered by amino acids side chain responsible for inter and intramolecular interactions. Complexion of SPI with nanoparticle makes it feasible for drug delivery as it offers excellent loading capacity. Encapsulation of drugs inside protein matrix not only protects drug from harsh environment but also helps in targeted delivery. Various antibiotics such as gentamicin and ciprofloxacin can be incorporated into the SPI matrix for targeted controlled release and antibacterial effects.

Soy Protein Isolate, Biomedical Application, Targeted Drug Delivery, Wound Dressing, Cytotoxicity, Bone Fillers

Published online 11/15/2022, 19 pages

Citation: Priya Rani, Priyaragini Singh, Abhay Pandit, Rakesh Kumar, Nanoparticles Incorporated Soy Protein Isolate for Emerging Applications in Medical and Biomedical Sectors, Materials Research Foundations, Vol. 135, pp 265-283, 2023


Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

[1] R. A. Grant, Industrial Soya Protein Technology, in: Applied protein chemistry, Applied Science Publishers Ltd., London, 1980, pp. 87-112.
[2] Z. Teng, C. Liu, X. Yang, L. Li, C. Tang, Y. Jiang, Fractionation of soybean globulins using Ca(2+) and Mg(2+): a comparative analysis, J. Am. Oil Chem.’ Soc. 86 (2009) 409-417.
[3] J.E. Kinsella, Functional properties of soy proteins, J. Am. Oil Chem. Soc. 56 (1979) 242-258.
[4] D. Liu, H. Tian, J. Zeng, P. R. Chang, Core-shell nanoblends from soy protein/polystyrene by emulsion polymerization, Macromol. Mater. Eng. 293 (2008) 714-721.
[5] A. U. Daniels, K. P. Andriano, W.P. Smutz, M.K. Chang, J. Heller, Evaluation of absorbable poly (ortho esters) for use in surgical implants, J. Appl. Biomater. 5 (1994) 51-64.
[6] K.P. Andriano, T. Pohjonen, P. Törmälä, Processing and characterization of absorbable polylactide polymers for use in surgical implants, J. Appl. Biomater. 5 (1994) 133-140.
[7] G. Chen, T. Ushida, T. Tateishi, Hybrid biomaterials for tissue engineering: a preparative method for PLA or PLGA-collagen hybrid sponges, Adv. Mater. 12 (2000) 455-457.<455::AID-ADMA455>3.0.CO;2-C
[8] J. J. van Soest, P. M. Kortleve, The influence of maltodextrins on the structure and properties of compression‐molded starch plastic sheets, J. Appl. Polym. Sci. 74 (1999) 2207-2219.<2207::AID-APP10>3.0.CO;2-3
[9] I. Paetau, C. Z. Chen, J. L. Jane, Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical properties and water absorption, Ind. Eng. Chem. Res. 33 (1994) 1821-1827.
[10] Chouke, P.B., Potbhare, A.K., Meshram, N.P., Rai, M.M., Dadure, K.M., Chaudhary, K., Rai, A.R., Desimone, M.F., Chaudhary, R.G., Masram, D.T. Bioinspired NiO nanospheres: Exploring in-vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking and proposed vacuolization mechanism, ACS Omega, 7 (2022) 6869−6884.
[11] Sonkusare, V., Chaudhary, R.G., Bhusari, G., Juneja, H.D. Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 Microflower/γ-Bi2O3 Microspindle. Nano-Structures & Nano-Objects, 13 (2018) 121-131.
[12] X. Qi, W. Wei, J. Shen, W. Dong, Salecan polysaccharide-based hydrogels and their applications: a review, J. Mater. Chem. 7 (2019) 2577-2587.
[13] A. Latorre, P. Couleaud, A. Aires, A. L. Cortajarena, A. Somoza, Multifunctionalization of magnetic nanoparticles for controlled drug release: A general approach, Eur. J. Med. Chem. 82 (2014) 355-362.
[14] L. Wei, J. Lu, H. Xu, A. Patel, Z. S. Chen, G. Chen, Silver nanoparticles: synthesis, properties, and therapeutic applications, Drug Disc. Tod. 20 (2015) 595-601.
[15] V. J. Mohanraj, Y. Chen, Nanoparticles-a review, Trop. J. Pharm. Res. 5(2006) 561-573.
[16] Catalano, P.N. Chaudhary, R.G. Martin F. Desimone, P.L. Santo, A Survey on Analytical methods for green synthesized nanomaterials. Current
[17] J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, J. M. DeSimone, Direct fabrication and harvesting of monodisperse, shape-specific nano biomaterials, J. Am. Chem. Soc. 127 (2005) 10096-10100.
[18] Z. Teng, Y. Luo, Q. Wang, Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation, J. Agric. Food Chem. 60 (2012) 2712-2720.
[19] J. Hadzieva, K. Mladenovska, C. M. Simonoska, M. Glavaš Dodov, S. Dimchevska, N. Geškovski, K. Goracinova, Lactobacillus casei encapsulated in soy protein isolate and alginate microparticles prepared by spray drying, Food Tech. Biotech. 55 (2017) 173-186.
[20] C. J. Verbeek, L. E. van den Berg, Extrusion processing and properties of protein‐based thermoplastics, Macromol. Mater. eng. 295 (2010) 10-21.
[21] S. Y. Cho, J. W. Park, H. P. Batt, R. L. Thomas, Edible films made from membrane processed soy protein concentrates, LWT-Food Sci. Technol. 40 (2007) 418-423.
[22] R. R. Koshy, S. K. Mary, S. Thomas, L. A. Pothan, Environment friendly green composites based on soy protein isolate-A review, Food Hydrocoll. 50 (2015) 174-192.
[23] J. T. Kim, A. N. Netravali, Development of aligned-hemp yarn-reinforced green composites with soy protein resin: Effect of pH on mechanical and interfacial properties, Compos. Sci. Technol. 71 (2011) 541-547.
[24] Z. Peles, I. Binderman, I. Berdicevsky, M. Zilberman, Soy protein films for wound‐healing applications: antibiotic release, bacterial inhibition and cellular response, J. Tissue Eng. Regen. Med. 7(2013) 401-412.
[25] O. Ozcalik, F. Tihminlioglu, Barrier properties of corn zein nanocomposite coated polypropylene films for food packaging applications, J. Food Eng. 114 (2013) 505-513.
[26] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Rep. 28 (2000) 1-63.
[27] M. M. Rahman, A. N. Netravali, B. J. Tiimob, V. Apalangya, V. K. Rangari, Bio‐inspired “green” nanocomposite using hydroxyapatite synthesized from eggshell waste and soy protein, J. Appl. Polym. Sci. 133 (2016).
[28] S. Zhao, J. Yao, X. Fei, X. Chen, An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate, Mater. Lett. 95 (2013) 142-144.
[29] M. N. Angles, A. Dufresne, Plasticized starch/tunicin whiskers nanocomposites, Macromol. 33(2000), 8344-8353.
[30] H. Zheng, F. Ai, P. R. Chang, J. Huang, A. Dufresne, Structure and properties of starch nanocrystal‐reinforced soy protein plastics, Polym. Compos. 30 (2009) 474-480.
[31] S. Zhang, C. Xia, Y. Dong, Y. Yan, J. Li, S. Q. Shi, L. Cai, Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal, Ind. Crops. Prod. 80 (2016) 207-213.
[32] Y. Chen, L. Zhang, Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution, J. Appl. Polym. Sci. 94 (2004) 748-757.
[33] H. Tian, G. Xu, Processing and characterization of glycerol-plasticized soy protein plastics reinforced with citric acid-modified starch nanoparticles, J. Polym. Environ. 19 (2011) 582-588.
[34] G. Guo, C. Zhang, Z. Du, W. Zou, A. Xiang, H. Li, Processing and properties of phthalic anhydride modified soy protein/glycerol plasticized soy protein composite films, J. Appl. Polym. Sci. 132 (2015).
[35] N, Reddy, Y. Yang, Soy protein fibers with high strength and water stability for potential medical applications, Biotechnol. Prog. 25 (2009) 1796-1802.
[36] R.G. Chaudhary, M.S. Umekar, A.K. Potbhare, G.S. Bhusari, M.F. Desimone. Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications, Current Pharmaceutical Biotechnology, 22 (2021) 1759 – 1781.
[37] N. Reddy, Y. Yang, Potential of plant proteins for medical applications, Trends Biotechnol. 29 (2011) 490-498.
[38] M. Santin, C. Morris, G. Standen, L. Nicolais, L. Ambrosio, A new class of bioactive and biodegradable soybean-based bone fillers, Biomacromol. 8 (2007) 2706-2711.
[39] A. Abaee, M. Mohammadian, S. M. Jafari, Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems, Trends Food Sci. Technol. 70 (2017) 69-81.
[40] A. González, L. I. Tártara, S. D. Palma, C. I. A. Igarzabal, Crosslinked soy protein films and their application as ophthalmic drug delivery system, Mater. Sci. Eng. C. 51 (2015) 73-79.
[41] P. Lavanya, N. Vijayakumari, Fabrication of Poly (d, l-Alanine)/minerals substituted hydroxyapatite bio-composite for bone tissue applications, Mater. Discov. 11 (2018) 14-18.
[42] T. Kelesidis, J. Fleisher, S. Tsiodras, Anaphylactoid reaction considered ciprofloxacin related: a case report and literature review, Clin. Ther. 32 (2010) 515-526.
[43] S. Basu, H. S. Samanta, J. Ganguly, Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn, Soft Mater. 16 (2018) 7-19.
[44] M. C. García, J. C. Cuggino, C. I. Rosset, P. L. Páez, M. C. Strumia, R. H. Manzo, A. F. Jimenez-Kairuz, A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release, Mater. Sci. Eng. 69 (2016) 236-246.
[45] P. B. Kajjari, L. S. Manjeshwar, T. M. Aminabhavi, Novel interpenetrating polymer network hydrogel microspheres of chitosan and poly (acrylamide)-grafted-guar gum for controlled release of ciprofloxacin, Ind. Eng. Chem. Res. 50 (2011) 13280-13287.
[46] K. Prusty, A. Biswal, S. B. Biswal, S. K. Swain, Synthesis of soy protein/polyacrylamide nanocomposite hydrogels for delivery of ciprofloxacin drug, Mater. Chem. Phy. 234 (2019) 378-389.
[47] P. Nayak, S. K. Sahoo, A. Behera, P. K. Nanda, P. L. Nayak, B. C. Guru, Synthesis and characterization of soy protein isolate/MMT nanocomposite film for the control release of the drug ofloxacin, World J. Nanosci. Eng. 1(2011) 27.
[48] A.K. Potbhare, P.B. Chouke, A. Mondal, R.U. Thakare, S. Mondal, Rhizoctonia solani assisted biosynthesis of silver nanoparticles for antibacterial assay, Materials Today: Proceedings, 29 (2020) 939-945.
[49] J. Koehler, F. P. Brandl, A. M. Goepferich, Hydrogel wound dressings for bioactive treatment of acute and chronic wounds, Eur. Polym. J. 100 (2018) 1-11.
[50] C. M. Vaz, P. F. Van Doeveren, G. Yilmaz, L. A. De Graaf, R. L. Reis, A. M . Cunha, Processing and characterization of biodegradable soy plastics: Effects of crosslinking with glyoxal and thermal treatment, J. Appl. Polym. Sci. 97(2005) 604-610.
[51] C. M. Vaz, J. F. Mano, M. Fossen, R. F. Van Tuil, L. A. De Graaf, R. L. Reis, A. M. Cunha, Mechanical, dynamic-mechanical, and thermal properties of soy protein-based thermoplastics with potential biomedical applications, J. Macromol. Sci. Phys. 41 (2002) 33-46.
[52] G. A. Silva, C. M. Vaz, O. P. Coutinho, A. M. Cunha, R. L. Reis, In vitro degradation and cytocompatibility evaluation of novel soy and sodium caseinate-based membrane biomaterials, J. Mater. Sci.: Mater. Med. 14 (2003) 1055-1066.
[53] M. Santin, L. Ambrosio, Soybean-based biomaterials: preparation, properties and tissue regeneration potential, Expert Rev. Med. Devices. 5 (2008) 349-358.
[54] J. M. Anderson, Biological responses to materials, Annu. Rev. Mater. Res. 31 (2001) 81-110.
[55] Medicines and Health Care products Regulatory Agency. MDA/2004/047: Trilucent (soy bean oil filled). (Breast implants 2004)
[56] G. Standen, J. Salvage, C. Morris, Manufacture process control and cytotoxicity evaluation of soybean based biomaterials. Proceedings of the 19th European Society for Biomaterials conference. Sorrento, Italy 11-15 september, 2005
[57] L. Lin, A. Perets, Y. E. Har‐el, D. Varma, M. Li, P. Lazarovici, D. L. Woerdeman, P. I. Lelkes, Alimentary ‘green’ proteins as electrospun scaffolds for skin regenerative engineering, J. Tissue Eng. Regen. Med. 7 (2013) 994-1008.
[58] S. Tansaz, A. R. Boccaccini, Biomedical applications of soy protein: A brief overview, J. Biomed. Mater. Res. 104 (2016) 553-569.
[59] M. Wu, F. Chen, P. Wu, Z. Yang, S. Zhang, L. Xiao, L. Cai, Nanoclay mineral-reinforced macroporous nanocomposite scaffolds for in situ bone regeneration: In vitro and in vivo studies, Mater. Des. 205 (2021) 109734.