Effect of Nanomaterials on the Properties of Binding Materials in the Construction Industry


Effect of Nanomaterials on the Properties of Binding Materials in the Construction Industry

N.B. Singh, B. Middendorf, Richa Tomar

The construction industry uses a lot of binding materials. One of the most important binders is cement and concrete. Most used cement in concrete is Portland cement (OPC). Its manufacture consumes lot of raw materials and energy and emits huge amounts of hazardous gases particularly CO2 into the atmosphere. Attempts are being made to overcome the above problems by using blended cements, geopolymer and LC3 cements. However, there are a number of limitations in using alternatives to OPC. In recent years researches are being carried out to use nanomaterials such as nano silica, nano titanium oxide, nano alumina, nano CaCO3, nano clay, nano carbons, etc. in cement and concrete to improve the properties. The basic objectives of using nanomaterials in binding materials are to increase mechanical properties and durability. Nanomaterials, if added in appropriate amounts, accelerate the hydration, increase mechanical properties and decrease the porosity. In addition to improving physical properties, nanomaterials particularly nano TiO2 acts as a cleaning agent. Nano embedded phase change materials perform better. Since it is a new field, little work has been done so far. In the present chapter the effect of different nanomaterials on the properties of OPC, concrete, geopolymer cement and LC3 cement have been discussed at length.

Nanomaterials, Portland Cement, Concrete, Geopolymer, LC3 Cement, Phase Change Materials

Published online 11/15/2022, 39 pages

Citation: N.B. Singh, B. Middendorf, Richa Tomar, Effect of Nanomaterials on the Properties of Binding Materials in the Construction Industry, Materials Research Foundations, Vol. 135, pp 226-264, 2023

DOI: https://doi.org/10.21741/9781644902172-10

Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

[1] C.N. Waters, J. Zalasiewicz, Concrete: The Most Abundant Novel Rock Type of the Anthropocene, Elsevier Inc., 2018. doi: 10.1016/b978-0-12-809665- 9.09775-5. https://doi.org/10.1016/B978-0-12-809665-9.09775-5
[2] C. Shi, A.F. Jiménez, A. Palomo, New cements for the 21st century: The pursuit of an alternative to Portland cement, Cem. Concr. Res. 41 (7) (2011) 750-763, https://doi.org/10.1016/j.cemconres.2011.03.016. https://doi.org/10.1016/j.cemconres.2011.03.016
[3] F. Pacheco-Torgal, S. Miraldo, Y. Ding, J.A. Labrincha, Nanoparticles for high performance concrete (HPC), Nanotechnol. Eco-Efficient Constr. Mater. Process. Appl. (2013) 38-52, https://doi.org/10.1533/9780857098832.1.38. https://doi.org/10.1533/9780857098832.1.38
[4] M.I. Khan, Nanosilica/silica fume, Elsevier Ltd, 2018. doi: 10.1016/b978-0-08- 102156-9.00014-6.
[5] G. Habert, E. Denarié, A. Šajna, P. Rossi, Lowering the global warming impact of bridge rehabilitations by using Ultra High Performance Fibre Reinforced Concretes, Cem. Concr. Compos. 38 (2013) 1-11, https://doi.org/10.1016/j. cemconcomp.2012.11.008. https://doi.org/10.1016/j.cemconcomp.2012.11.008
[6] D. Xuan, B. Zhan, C.S. Poon, Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation, J. Cleaner Prod. 133 (2016) 1235-1241, https://doi.org/10.1016/j.jclepro.2016.06.062. https://doi.org/10.1016/j.jclepro.2016.06.062
[7] M.B. Ali, R. Saidur, M.S. Hossain, A review on emission analysis in cement industries, Renew. Sustain. Energy Rev. 15 (5) (2011) 2252-2261, https://doi. org/10.1016/j.rser.2011.02.014. https://doi.org/10.1016/j.rser.2011.02.014
[8] F. Pacheco-Torgal, S. Jalali, J.A. Labrincha, V.M. John, Eco-Efficient Concrete, 2013. doi: 10.1533/9780857098993. https://doi.org/10.1533/9780857098993
[9] R. Yu, P. Spiesz, H.J.H. Brouwers, Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount, Constr. Build. Mater. 65 (2014) 140-150, https:// doi.org/10.1016/j.conbuildmat.2014.04.063. https://doi.org/10.1016/j.conbuildmat.2014.04.063
[10] Abhilash P. P. , Dheeresh Kumar Nayak , Bhaskar Sangoju , Rajesh Kumar, Veerendra Kumar, Effect of nano-silica in concrete; a review, Construction and Building Materials 278(2021)122347, https://doi.org/10.1016/j.conbuildmat.2021.122347 https://doi.org/10.1016/j.conbuildmat.2021.122347
[11]. J. S. Belkowitz, W. B. Belkowitz, R. D. Moser, F. T. Fisher, and C. A. Weiss. Jr., “The influence of nano silica size and surface area on phase development, chemical chrinkage and compressive ctrength of cement composites,” in Nanotechnology in Construction Proceedings of NICOM5, K. Sobolev and S. P. Shah, Eds., ed: Springer International Publishing, 2015, pp. 207-212. https://doi.org/10.1007/978-3-319-17088-6_26
[12] K. Sobolev, “Nanotechnology and nanoengineering of construction materials,” in Nanotechnology in Construction Proceedings of NICOM5, K. Sobolev and S. P. Shah, Eds., ed: Springer International Publishing, 2015, pp. 3-13.
[13] G. Li, “Properties of high-volume fly ash concrete incorporating nano-SiO2,” Cement and Concrete Research, vol. 34, pp. 1043-1049, 2004. https://doi.org/10.1016/j.cemconres.2003.11.013
[14] D. Kong, Y. Su, X. Du, Y. Yang, S. Wei, and S. P. Shah, “Influence of nano-silica agglomeration on fresh properties of cement pastes,” Construction and Building Materials, vol. 43, pp. 557-562, 2013. https://doi.org/10.1016/j.conbuildmat.2013.02.066
[15] Q. Ye, Z. Zhang, D. Kong, and R. Chen, ” Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume,” Construction and building materials, vol. 21, pp. 539-545, 2007. https://doi.org/10.1016/j.conbuildmat.2005.09.001
[16] W. Li, Z. Huang, F. Cao, Z. Sun, and S. P. Shah, “Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix,” Construction and Building Materials, vol. 95, pp. 366-374, 2015. https://doi.org/10.1016/j.conbuildmat.2015.05.137
[17] P. Hou, S. Kawashima, K. Wang, D. J. Corr, J. Qian, and S. P. Shah, “Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar,” Cement and Concrete Composites, vol. 35, pp. 12-22, 2013 https://doi.org/10.1016/j.cemconcomp.2012.08.027
[18] F. Sanchez and K. Sobolev, “Nanotechnology in concrete – A review,” Construction and Building Materials, vol. 24, pp. 2060-2071, 2010 https://doi.org/10.1016/j.conbuildmat.2010.03.014
[19] Ali M. Onaizi , Ghasan Fahim Huseien , Nor Hasanah Abdul Shukor Lim , Mugahed Amran , Mostafa Samadi, Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review, Construction and Building Materials 306 (2021) 124850 https://doi.org/10.1016/j.conbuildmat.2021.124850
[20] Abbas Mohajerani, Lucas Burnett, John V. Smith, Halenur Kurmus, John Milas, Arul Arulrajah , Suksun Horpibulsuk and Aeslina Abdul Kadir, Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use, Materials 12(2019) , 3052; doi:10.3390/ma12193052 https://doi.org/10.3390/ma12193052
[21] J. Davidovits, Geopolymers, J. Therm. Anal. 37 (1991) 1633-1656. https://doi.org/10.1007/BF01912193
[22] P. Zhang, K.X. Wang, Q.F. Li, J. Wang, Y.F. Ling, Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders – A review, J. Clean. Prod. 258 (2020). 120896. https://doi.org/10.1016/j.jclepro.2020.120896
[23] H.Y. Zhang, V. Kodur, B. Wu, L. Cao, F. Wang, Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures, Constr. Build. Mater. 109 (4) (2016) 17-24. https://doi.org/10.1016/j.conbuildmat.2016.01.043
[24] N.B.Singh, Mukesh Kumar , Sarita Rai , Geopolymer cement and concrete: Properties, Materials Today: Proceedings 29(2020)743-748 https://doi.org/10.1016/j.matpr.2020.04.513
[25] B. Singh, G. Ishwarya, M. Gupta, S.K. Bhattacharyya, Geopolymer concrete: A review of some recent developments, Constr. Build. Mater. 85 (2015) 78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
[26] M.M. Al-mashhadani, O. Canpolat, Y. Aygörmez, M. Uysal, S. Erdem, Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites, Constr. Build. Mater. 167 (2018) 505-513. https://doi.org/10.1016/j.conbuildmat.2018.02.061
[27] T.Y. Xie, P. Visintin, X.Y. Zhao, R. Gravina, Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state of-the-art and the development of a new unified approach, Constr. Build. Mater. 256 (2020). 119380. https://doi.org/10.1016/j.conbuildmat.2020.119380
[28] V. Sreevidya, Investigations on the flexural behaviour of ferro geopolymer composite slabs, 2014.
[29] Karen Scrivenera, Fernando Martirena, Shashank Bishnoi, Soumen Maity, Calcined clay limestone cements (LC3 ) Cement and Concrete Research 114(2018)49-56 https://doi.org/10.1016/j.cemconres.2017.08.017
[30] R. Bawa, Drug delivery at the nanoscale: a guide for scientists, physicians and lawyers, in: S.A. Mousa, R. Bawa, G.F. Audette (Eds.), The Road from Nanomedicine to Precision Medicine, Jenny Stanford Publishing, New York, 2019, pp. 1-134. https://doi.org/10.1201/9780429295010-1
[31] R.P. Feynman, There’s plenty of room at the bottom, Eng. Sci. 23 (1960) 22-36.
[32] N. Taniguchi, C. Arakawa, T. Kobayashi, On the basic concept of nano-technology, in: Proceedings of the International Conference on Production Engineering, 1974.
[33] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine, Molecules 25 (2019) 112 https://doi.org/10.3390/molecules25010112
[34] (https://www.nano.gov/nanotech-101/what)
[35] Ali M. Onaizi , Ghasan Fahim Huseien , Nor Hasanah Abdul Shukor Lim , Mugahed Amran, Mostafa Samadi, Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review, Construction and Building Materials 306 (2021) 124850 https://doi.org/10.1016/j.conbuildmat.2021.124850
[36] Tawfik A. Saleh, Nanomaterials: Classification, properties, and environmental toxicities, Environmental Technology & Innovation 20 (2020) 101067 https://doi.org/10.1016/j.eti.2020.101067
[37] Mousumi Das and Saptarshi Chatterjee, Green synthesis of metal/metal oxidenanoparticles toward biomedical applications: Boon or bane, Green Synthesis, Characterization and Applications of Nanoparticles, (2019) 265-301 https://doi.org/10.1016/B978-0-08-102579-6.00011-3
[38]Mahmoud Nasrollahzadeh, S. Mohammad Sajadi, Mohaddeseh Sajjadi and Zahra Issaabadi, Applications of Nanotechnology in Daily Life -Chapter 4, Interface Science and Technology, 28, (2019) 113-143 https://doi.org/10.1016/B978-0-12-813586-0.00004-3
[39]Dimitra Papadaki, George Kiriakidis, Theocharis Tsoutsos, Applications of nanotechnology in construction industry-Chapter-11, Fundamentals of Nanoparticles (2018)343-370 https://doi.org/10.1016/B978-0-323-51255-8.00011-2
[40] F. Pacheco-Torgal, S. Jalali, Nanotechnology: advantages and drawbacks in the field of construction and building materials, Construction and Building Materials (2011) 582-590. https://doi.org/10.1016/j.conbuildmat.2010.07.009
[41] A.K. Rana, et al. Significance of nanotechnology in construction engineering, Int. J. Recent Trends Eng. 1 (4) (2009) 6-8.
[42]Harald R. Tschiche, Frank S. Bierkandt, Otto Creutzenberg , Valerie Fessard, Roland Franz, Bernd Giese, Ralf Greiner, Karl Heinz Haas, Andrea Haase, Andrea Hartwig, Kerstin Hund Rinke, Pauline Iden, Charlotte Kromer, Katrin Loeschner, Diana Mutz, Anastasia Rakow, Kirsten Rasmussen, Hubert Rauscher, Hannes Richter, Janosch Schoon, Otmar Schmid, Claudia Som, Günter E. M.Tovar, Paul Westerhoff, Wendel Wohlleben , Andreas Luch, Peter Laux, Environmental considerations and current status of grouping and regulation of engineered nanomaterials, Environmental Nanotechnology, Monitoring & Management 18 (2022) 100707 https://doi.org/10.1016/j.enmm.2022.100707
[43]S. Shah, P. Hou, M. Konsta-Gdoutos, Nano-modification of cementitious material: toward a stronger and durable concrete, J. Sustain. Cem. Based. Mater., 5 (2016)1-22 https://doi.org/10.1080/21650373.2015.1086286
[44]Konstantin Sobolev,Modern developments related to nanotechnology and nanoengineering of concrete, Frontiers of Structural and Civil Engineering 10(2016)131-141 https://doi.org/10.1007/s11709-016-0343-0
[45]Natt Makul, Modern sustainable cement and concrete composites: Review of current status, challenges and guidelines, Sustainable Materials and Technologies 25 (2020) e00155 https://doi.org/10.1016/j.susmat.2020.e00155
[46] N.B.Singh, Properties of cement and concrete in presence of nanomaterials (Chapter-2) in Smart Nanoconcretes and Cement-Based Materials, 2020,9-39 https://doi.org/10.1016/B978-0-12-817854-6.00002-7
[47] M.A. Kewalramani, Z.I. Syed, Application of nanomaterials to enhance microstructure and mechanical properties of concrete, Int. J. Integr. Eng. 10 (2) (2018). https://doi.org/10.30880/ijie.2018.10.02.019
[48] M.A.A. Rajak, Z.A. Majid, M. Ismail, Morphological characteristics of hardened cement pastes incorporating nano-palm oil fuel ash, Procedia Manuf. 2 (2015) 512-518. https://doi.org/10.1016/j.promfg.2015.07.088
[49] Qiang Fu, Xu Zhao, Zhaorui Zhang, Wenrui Xu, Ditao Niu, Effects of nanosilica on microstructure and durability of cement-based materials, Powder Technology 404 (2022) 117447 https://doi.org/10.1016/j.powtec.2022.117447
[50] Xiaoyan Liu, Li Liu , Kai Lyu , Tianyu Li, Pingzhong Zhao, Ruidan Liu , Junqing Zuo, Feng Fu, Surendra P. Shah, Enhanced early hydration and mechanical properties of cement-based materials with recycled concrete powder modified by nano-silica, Journal of Building Engineering 50 (2022) 104175 https://doi.org/10.1016/j.jobe.2022.104175
[51] Jamal A. Abdalla, Blessen Skariah Thomas, Rami A. Hawileh , Jian Yang , Bharat Bhushan Jindal , Erandi Ariyachandra, Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete 4(2022)100061 https://doi.org/10.1016/j.clema.2022.100061
[52] Qiang Fu, Zhaorui Zhang, Xu Zhao, Wenrui Xu, Ditao Niu, Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: A review, Journal of Building Engineering 50(2022)104220 https://doi.org/10.1016/j.jobe.2022.104220
[53] Z.B. Jian, X.D. Xing, P.C. Sun, The effect of nanoalumina on early hydration and mechanical properties of cement pastes. Construction and Building Materials 202(2019) 169-176. https://doi.org/10.1016/j.conbuildmat.2019.01.022
[54] Raju Goyal, Vinay K. Verma , N.B. Singh, Effect of nano TiO2 & ZnO on the hydration properties of Portland cement, Materials Today: Proceedings (2022) (in press) https://doi.org/10.1016/j.matpr.2022.05.206
[55] Xiaoying Li, Jun Li , Zhongyuan Lu, Jiakun Chen, Properties and hydration mechanism of cement pastes in presence of nano-ZnO, Construction and Building Materials 289(2021)123080 https://doi.org/10.1016/j.conbuildmat.2021.123080
[56] Li Wang, Hongliang Zhang , and Yang Gao, Effect of TiO2 Nanoparticles on Physical and Mechanical Properties of Cement at Low Temperatures, Advances in Materials Science and Engineering , Volume 2018, Article ID 8934689, 12 pages https://doi.org/10.1155/2018/8934689 https://doi.org/10.1155/2018/8934689
[57] Fatemeh Hamidi and Farhad Aslani, TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques, Nanomaterials 9(2019) 1444; doi:10.3390/nano9101444 https://doi.org/10.3390/nano9101444
[58] Jai Prakash, Junghyun Cho, Yogendra Kumar Mishra, Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread,14(2022)100100 https://doi.org/10.1016/j.mne.2021.100100
[59] https://www.archdaily.com/20105/church-of-2000-richard-meier.
[60]Mahyar Ramezani , Ayoub Dehghani, Muhammad M. Sherif, Carbon nanotube reinforced cementitious composites: A comprehensive review , Construction and Building Materials 315(2022)125100 https://doi.org/10.1016/j.conbuildmat.2021.125100
[61] Ezzatollah Shamsaei, Felipe Basquiroto de Souza , Xupei Yao , Emad Benhelal , Abozar Akbari , Wenhui Duan, Graphene-based nanosheets for stronger and more durable concrete: A review, Construction and Building Materials 183(2018)642-660 https://doi.org/10.1016/j.conbuildmat.2018.06.201
[62]Shenghua Lv , Yujuan Ma, Chaochao Qiu, Ting Sun, Jingjing Liu, Qingfang Zhou, Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites , Construction and Building Materials 49(2013)121-127 https://doi.org/10.1016/j.conbuildmat.2013.08.022
[63] Xu-Jing Niu , Qing-Bin Li , Yu Hu , Yao-Sheng Tan , Chun-Feng Liu, Properties of cement-based materials incorporating nano-clay and calcined nano-clay: A review, Construction and Building Materials 284(2021)122820 https://doi.org/10.1016/j.conbuildmat.2021.122820
[64] N.B. Singh, Clays and Clay Minerals in the Construction Industry, Minerals, 12 (2022)301 https://doi.org/10.3390/min12030301
[65] Muhammad Aamer Hayat , Yong Chen , Mose Bevilacqua, Liang Li, Yongzhen Yang, Characteristics and potential applications of nano-enhanced phase change materials: A critical review on recent developments, Sustainable Energy Technologies and Assessments 50 (2022) 101799 https://doi.org/10.1016/j.seta.2021.101799
[66] Kwok Wei Shah, Pin Jin Ong, Ming Hui Chua, Sheng Heng Gerald Toh, Johnathan Joo Cheng Lee, Xiang Yun Debbie Soo, Zhuang Mao Png, Rong Ji, Jianwei Xu, Qiang Zhu, Application of phase change materials in building components and the use of nanotechnology for its improvement, Energy and Buildings 262( 2022) 112018 https://doi.org/10.1016/j.enbuild.2022.112018
[67] Hemn Unis Ahmed , Azad A. Mohammed, Ahmed S. Mohammed, The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review, Journal of Building Engineering 49 (2022) 104062. https://doi.org/10.1016/j.jobe.2022.104062
[68] E.D. Rodrı’guez, S.A. Bernal, J.L. Provis, J. Paya, J.M. Monzo, M.V. Borrachero, Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites 35 (2013) 1-11. https://doi.org/10.1016/j.cemconcomp.2012.08.025
[69] D. Adak, M. Sarkar, S. Mandal, Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Construction Building Materials 70 (2014) 453-459. https://doi.org/10.1016/j.conbuildmat.2014.07.093
[70] F. Shahrajabian, K. Behfarnia, The effects of nano particles on freeze and thaw resistance of alkali activated slag concrete, Construction and building materials, 176 (2018) 172-178. https://doi.org/10.1016/j.conbuildmat.2018.05.033
[71] Tanakorn Phoo-ngernkham, Prinya Chindaprasirt , Vanchai Sata , Sakonwan Hanjitsuwan , Shigemitsu Hatanaka, The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature, Materials and Design 55 (2014) 58-65. https://doi.org/10.1016/j.matdes.2013.09.049
[72] D. Syamsidar, Nurfadilla, Subaer, The Properties of Nano TiO2-Geopolymer Composite as a Material for Functional Surface Application, in: MATEC Web Conf., EDP Sciences, 97 (2017) 1013. https://doi.org/10.1051/matecconf/20179701013
[73] Sudhir Singh Bhadauria, Ashita Singh, Investigating mechanical characteristics of geopolymer concrete under the influence of Nano-fillers, Materials Today: Proceedings xxx (xxxx) xxx.
[74] H.M. Khater, H.A. Abd el Gawaad, H.A.A. Gawaad, H.A. Abd el Gawaad, Characterization of alkali activated geopolymer mortar doped with MWCNT. Construction Building Materials 102 (2016) 329-337. https://doi.org/10.1016/j.conbuildmat.2015.10.121
[75] Buchit Maho, Piti Sukontasukkul, Gritsada Sua-Iam, Manote Sappakittipakorn, Darrakorn Intarabut, Cherdsak Suksiripattanapong, Prinya Chindaprasirt, Suchart Limkatanyu, Mechanical properties and electrical resistivity of multiwall carbon nanotubes incorporated into high calcium fly ash geopolymer, Case Studies in Construction Materials 15 (2021) e00785. https://doi.org/10.1016/j.cscm.2021.e00785
[76] C.S.B. Xavier, A. Rahim, Nano aluminium oxide geopolymer concrete: An experimental study, Nano aluminium oxide geopolymer concrete: An experimental study, 56 (2022) 1643-1647. https://doi.org/10.1016/j.matpr.2021.10.070
[77] Tanakorn Phoo-ngernkham, Prinya Chindaprasirt , Vanchai Sata , Sakonwan Hanjitsuwan , Shigemitsu Hatanaka, The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature, Materials and Design 55 (2014) 58-65. https://doi.org/10.1016/j.matdes.2013.09.049
[78] P.P. Abhilash, D.K. Nayak, B. Sangoju, R. Kumar, V. Kumar, Effect of nano-silica in concrete; a review, Constr Build Mater 278 (2021), 122347 https://doi.org/10.1016/j.conbuildmat.2021.122347
[79] Run-Sheng Lin Seokhoon Oh, Wei Du, Xiao-Yong Wang, Strengthening the performance of limestone-calcined clay cement (LC3) using nano silica, Construction and Building Materials 340( 2022) 127723 https://doi.org/10.1016/j.conbuildmat.2022.127723