Nanomaterials: Overview and Historical Perspectives

$30.00

Nanomaterials: Overview and Historical Perspectives

Mridula Guin and N.B. Singh

Much earlier than the start of the “nanoera”, people were using various nanosized materials but were not aware of nanotechnology. More than a thousand years BC, people used natural fabrics with much smaller size (1-20 nms). The British museum boasts about Licurg’s bowl showing different colours under different conditions, since it contains nanosize gold and silver. However, the nano word was not known. The concept of nanoscience came for the first time by the lecture of Prof. R. Feynman in 1959 at the session of the American Physical Society, saying that “there is plenty of room at the bottom”. The word Nanotechnology was introduced for the first time by N. Taniguchi in Tokyo in 1974. The idea of Feynman was developed by E. Drexler in 1986 through his book. Now nanoscience and nanotechnology have become one of the most important areas of science and technology dealing with materials of the size less than 100 nm in size. At the moment, there is no sector, where nanotechnology is not being used. Now it is said to be the era of nanoscience and technology.

Keywords
Nanomaterial, Nanotechnology, Nanoscience, Nanosize, Lycurgus Cup

Published online 11/15/2022, 22 pages

Citation: Mridula Guin and N.B. Singh, Nanomaterials: Overview and Historical Perspectives, Materials Research Foundations, Vol. 135, pp 1-22, 2023

DOI: https://doi.org/10.21741/9781644902172-1

Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

References
[1] A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka,J. A. Capobianco, Upconverting nanoparticles: Assessing the toxicity, Chem. Soc. Rev. 44 (2015) 1561-1584. https://doi.org/10.1039/C4CS00177J
[2] S. Kargozar, M. Mozafari, Nanotechnology and nanomedicine: Start small, think big, Mater. Today Proc. 5 (2018) 15492-15500. https://doi.org/10.1016/j.matpr.2018.04.155
[3] R. P. Feynman, There’s plenty of room at the bottom, Eng. Sci. 23 (1960) 22-36.
[4]H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene. Nature, 318 (1985) 162-163. https://doi.org/10.1038/318162a0
[5] S. Iijima, Helical microtubules of graphitic carbon. Nature, 354(1991) 56-58. https://doi.org/10.1038/354056a0
[6] Iso.org, 80004-1:2010, I. (2017). ISO/TS 80004-1:2010-Nanotechnologies-Vo-cabulary-Part 1 Core terms (2017). [online] Iso.org. Available from: https://www. iso.org/standard/51240.html.
[7] ISO/TS 27867, Nanotechnologies-terminology and definitions for nano-objects- nanoparticle, nanofibre and nanoplate, 2008. Available from: https://www.iso.org/ standard/44278.html.
[8] Shop.BSI, bsigroup.com. (2017). PAS 71:2011-Nanoparticles. Vocabulary-BSI British Standards Institute. [online] Available from: http://shop.bsigroup.com/Pro-ductDetail/pid=000000000030214797.
[9] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine, Molecules, 25 (2020) 112. doi:10.3390/molecules25010112 https://doi.org/10.3390/molecules25010112
[10] The British Museum. Available online: www.britishmuseum.org/research/collection_ online/collection_object_details.aspx?objobjec=61219&partId=1
[11] D. J. Barber, I. C. Freestone, An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy, Archaeometry, 32 (1990) 33-45. https://doi.org/10.1111/j.1475-4754.1990.tb01079.x
[12] I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus Cup-A Roman nanotechnology, Gold Bull. 40 (2007) 270-277. https://doi.org/10.1007/BF03215599
[13] This image is published on https://www.alamy.com/stock-photo/north-rose-window-notre-damecathedral. html and retrieved from Google Images
[14] The New York Times. Available online: www.nytimes.com/imagepages/2005/02/21/science/20050222_NANO1_GRAPHIC.html
[15] T. Pradell, A. Climent-Font, J. Molera, A. Zucchiatti, M. D. Ynsa, P. Roura, D. Crespo, Metallic and nonmetallic shine in luster: An elastic ion backscattering study, J. Appl. Phys. 101 (2007) 103518. https://doi.org/10.1063/1.2734944
[16] C. P. Poole, F. J. Owens, Introduction to Nanotechnology, John Wiley & Sons: New York, NY, USA, 2003.
[17] M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Pätzke, D.C. Meyer, Materials: Carbon nanotubes in an ancient Damascus sabre, Nature, 444 (2006) 286. https://doi.org/10.1038/444286a
[18] M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philos. Trans. R. Soc. Lond. 147 (1857) 145-181. https://doi.org/10.1098/rstl.1857.0011
[19] N. Taniguchi, C. Arakawa, T. Kobayashi, On the basic concept of nano-technology. In Proceedings of the International Conference on Production Engineering, Tokyo, Japan, 26-29 August 1974.
[20] E. K. Drexler, Engines of Creation: The Coming Era of Nanotechnology; Anchor Press: Garden City, NY, USA, 1986.
[21] E. K. Drexler, C. Peterson, G. Pergamit, Unbounding the Future: The Nanotechnology Revolution; William Morrow and Company, Inc.: New York, NY, USA, 1991.
[22] E. K. Drexler, Molecular engineering: An approach to the development of general capabilities for molecular manipulation, Proc. Natl. Acad. Sci. USA 78 (1981) 5275-5278. https://doi.org/10.1073/pnas.78.9.5275
[23] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40 (1982) 178. https://doi.org/10.1063/1.92999
[24] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 49 (1982) 57-61. https://doi.org/10.1103/PhysRevLett.49.57
[25] D. M. Eigler, E. K. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature, 344 (1990) 524-526. https://doi.org/10.1038/344524a0
[26] Institute of Physics Polish Academy of Sciences. Available online: http://info.ifpan.edu.pl/~{}wawro/ subframes/Surfaces.htm
[27] G. Binnig, C. F. Quate, C. Gerber, Atomic Force Microscope, Phys. Rev. Lett. 56 (1986) 930-933. https://doi.org/10.1103/PhysRevLett.56.930
[28] G. Binnig, Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution. U.S. Patent 4724318A, 16 October 1990.
[29] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359 (1992) 710-712. https://doi.org/10.1038/359710a0
[30] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834-10843. https://doi.org/10.1021/ja00053a020
[31] M. Bawendi, P. Carroll, W. Wilson, L. Brus, Luminescence properties of CdSe quan¬tum crystallites: resonance between interior and surface localized states, J. Chem. Phys. 96 (2) (1992) 946-954. https://doi.org/10.1063/1.462114
[32] C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer, Technol. Cancer Res. Treat. 3 (2004) 33-40. https://doi.org/10.1177/153303460400300104
[33] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA 100 (2003) 13549-13554. https://doi.org/10.1073/pnas.2232479100
[34] Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, J. M. Tour, Directional Control in Thermally Driven Single-Molecule Nanocars, Nano Lett. 5 (2005) 2330-2334. https://doi.org/10.1021/nl051915k
[35] J.-F. Morin, Y. Shirai, J. M. Tour, EnRoute to a Motorized Nanocar, Org. Lett. 8 (2006) 1713-1716. https://doi.org/10.1021/ol060445d
[36] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, 7×7 Reconstruction on Si(111) Resolved in Real Space. Phys. Rev. Lett. 50 (1983) 120-123. https://doi.org/10.1103/PhysRevLett.50.120
[37] Institute of Physics Polish Academy of Sciences. Available online: http://info.ifpan.edu.pl/~{}wawro/subframes/Surfaces.htm
[38] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, J. Am. Chem. Soc. 126 (2004) 12736-12737. https://doi.org/10.1021/ja040082h
[39] J. C. G. Esteves da Silva, H. M. R. Gonçalves, Analytical and bioanalytical applications of carbon dots, TrAC Trends Anal. Chem. 30 (2011) 1327-1336. https://doi.org/10.1016/j.trac.2011.04.009
[40] P.B. Chouke, K.M. Dadure, A.K. Potbhare, G.S. Bhusari, A. Mondal, K. Chaudhary, V. Singh, M.F. Desimone, R.G. Chaudhary, D.T. Masram Biosynthesized δ-Bi2O3 Nanoparticles from Crinum viviparum Flower Extract for Photocatalytic Dye Degradation and Molecular Docking. ACS Omega. 7 (2022) 20983-20993. https://doi.org/10.1021/acsomega.2c01745
[41] A K. Potbhare, R.G. Chaudhary, P.B. Chouke, A. Rai, A. Abdala, R. Mishra, M. Desimone, Graphene-based materials and their nanocomposites with metal oxides: Biosynthesis, electrochemical, photocatalytic and antimicrobial applications. Mater. Res. Forum. 83 (2020) 79-116. https://doi.org/10.21741/9781644900970-4
[42] L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S.-Y. Xie, Y.-P. Sun, Carbon Dots for Multiphoton Bioimaging, J. Am. Chem. Soc. 129 (2007) 11318-11319. https://doi.org/10.1021/ja073527l
[43] C. Kinnear, T. L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink, Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine, Chem. Rev. 117 (2017) 11476-11521. https://doi.org/10.1021/acs.chemrev.7b00194
[44] V. Weissig, T. K. Pettinger, N. Murdock, N. Nanopharmaceuticals (part 1): Products on the market, Int. J. Nanomed. 9 (2014) 4357-4373. https://doi.org/10.2147/IJN.S46900
[45] P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, 440 (2006) 297-302. https://doi.org/10.1038/nature04586
[46] N. C. Seeman, Nucleic acid junctions and lattices, J. Theor. Biol. 99 (1982) 237-247. https://doi.org/10.1016/0022-5193(82)90002-9
[47] V. Kumar, S. Bayda, M. Hadla, I. Caligiuri, C. Russo Spena, S. Palazzolo, S. Kempter, G. Corona, G. Toffoli, F. Rizzolio, Enhanced Chemotherapeutic Behavior of Open-Caged DNA@Doxorubicin Nanostructures for Cancer Cells, J. Cell. Physiol. 231, (2016) 106-110. https://doi.org/10.1002/jcp.25057
[48] V. Kumar, S. Palazzolo, S. Bayda, G. Corona, G. Toffoli, F. Rizzolio, DNA Nanotechnology for Cancer Therapy, Theranostics, 6 (2016) 710-725. https://doi.org/10.7150/thno.14203
[49] S. Palazzolo, M. Hadla, C. R. Spena, S. Bayda, V. Kumar, F. Lo Re, M. Adeel, I. Caligiuri, F. Romano, G. Corona, Proof-of-Concept Multistage Biomimetic Liposomal DNA Origami Nanosystem for the Remote Loading of Doxorubicin, ACS Med. Chem. Lett. 10 (2019) 517-521. https://doi.org/10.1021/acsmedchemlett.8b00557
[50] S. Palazzolo, M. Hadla, C. R. Spena, I. Caligiuri, R. Rotondo, M. Adeel, V. Kumar, G. Corona, V. Canzonieri, G. Toffoli, An Effective Multi-Stage Liposomal DNA Origami Nanosystem for In Vivo Cancer Therapy, Cancers, 11 (2019) 1997. https://doi.org/10.3390/cancers11121997
[51] P. Y. Lee, K. K. Y. Wong, Nanomedicine: A new frontier in cancer therapeutics. Curr. Drug Deliv. 8 (2011) 245-253. https://doi.org/10.2174/156720111795256110
[52] P.B. Chouke, A.K. Potbhare, N.P. Meshram, M. M. Rai, K.M. Dadure, K. Chaudhary, A.R. Rai, M. Desimone, R. G. Chaudhary, D.T. Masram, Bioinspired NiO nanospheres: Exploring in-vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking and proposed vacuolization mechanism. ACS Omega. 7 (2022) 6869−6884. https://doi.org/10.1021/acsomega.1c06544
[53] M. Cordani, A. Somoza, Á. Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment, Cell. Mol. Life Sci. 76 (2019) 1215-1242. https://doi.org/10.1007/s00018-018-2973-y
[54] N. Sharma, M. Sharma, Q. M. Sajid Jamal, M. A. Kamal, S. Akhtar, Nanoinformatics and biomolecular nanomodeling: A novel move en route for effective cancer treatment, Environ. Sci. Pollut. Res. Int. (2019) 1-15. https://doi.org/10.1007/s11356-019-05152-8
[55] P. Khanna, A. Kaur, D. Goyal, Algae-based metallic nanoparticles: Synthesis, characterization and applications, J. Microbiol. Methods, 163 (2019) 105656. https://doi.org/10.1016/j.mimet.2019.105656