Soft Superconductors: Materials and Applications

$30.00

Soft Superconductors: Materials and Applications

M. Bugdayci, S. Yesiltepe

Superconductors emerge as materials that offer great benefits with the superior properties they offer. In this study, the general properties of superconducting materials, their history and properties of soft superconductors are emphasized. Superconductivity mechanisms are investigated through crystal structures and BCS theory. Superconductivity properties of A3B, perovskite, MMo6X8&M2A3X3 compounds were evaluated over crystal symmetries. In addition, research on the production methods and usage areas of superconductors are presented in this section.

Keywords
Superconductors, Crystallographic Structures, Type 1, Critical Temperature, Bardeen-Cooper-Schrieffer Theory

Published online 10/5/2022, 20 pages

Citation: M. Bugdayci, S. Yesiltepe, Soft Superconductors: Materials and Applications, Materials Research Foundations, Vol. 132, pp 146-165, 2022

DOI: https://doi.org/10.21741/9781644902110-8

Part of the book on Superconductors

References
[1] Z. Li, L. Sang, P. Liu, Z. Yue, M.S. Fuhrer, Q. Xue, X. Wang, Atomically Thin Superconductors, 1904788 (2021) 1-15. https://doi.org/10.1002/smll.201904788
[2] G. Saito, Y. Yoshida, Organic Superconductors, 11 (2011) 124-145. https://doi.org/10.1002/tcr.201000039
[3] S. Sun, K. Liu, H. Lei, Type-I superconductivity in KBi 2 single crystals, (2016). https://doi.org/10.1088/0953-8984/28/8/085701
[4] C. Tarantini, W.L. Starch, N. Paudel, P.J. Lee, D.C. Larbalestier, Balachandran, 1644779 (2021) 1-8.
[5] Penetration depth study of the type-I superconductor PdTe 2, (2018).
[6] A. Vagov, Universal flux patterns and their interchange in superconductors between types I and II, Commun. Phys. (n.d.).
[7] S. Hameed, D. Pelc, Z.W. Anderson, A. Klein, R.J. Spieker, L. Yue, B. Das, J. Ramberger, M. Lukas, Y. Liu, M.J. Krogstad, R. Osborn, Y. Li, C. Leighton, R.M. Fernandes, M. Greven, Enhanced superconductivity and ferroelectric quantum criticality in plastically deformed strontium titanate, 21 (2022). https://doi.org/10.1038/s41563-021-01102-3
[8] B. Rosenstein, B.Y. Shapiro, PHYSICAL REVIEW B 100 , 054514 ( 2019 ) High-temperature superconductivity in single unit cell layer FeSe due to soft phonons in the interface layer of the SrTiO 3 substrate, 054514 (2019). https://doi.org/10.1103/PhysRevB.100.054514
[9] B.P. Dolan, C. Nash, J. Murugan, R. Adams, C. Kalousios, M. Spradlin, A. Volovich, Type I non-abelian superconductors in supersymmetric gauge theories, 11 (2007). https://doi.org/10.1088/1126-6708/2007/11/090
[10] T. Laboratories, M. Hill, Hard Superconductivity : Theory of the Motion of Abrikosov Flux Lines, (1963).
[11] H.T. Langhammer, T. Walther, Giant vortex states in type I superconductors simulated by Ginzburg – Landau equations, (n.d.).
[12] A.Y. Ganin, Y. Takabayashi, Y.Z. Khimyak, S. Margadonna, A. Tamai, M.J. Rosseinsky, K. Prassides, Bulk superconductivity at 38 K in a molecular system, (2008) 367-371. https://doi.org/10.1038/nmat2179
[13] J. Kitagawa, S. Hamamoto, N. Ishizu, from the Perspective of Materials Research, (2020).
[14] G. Shaw, S.B. Alvarez, J. Brisbois, L. Burger, W.A. Ortiz, B. Vanderheyden, A. V Silhanek, Magnetic Recording of Superconducting States, (2019) 1-17. https://doi.org/10.3390/met9101022
[15] P. Romano, A. Polcari, C. Cirillo, Drag Voltages in a Superconductor / Insulator / Ferromagnet Trilayer, (2021) 1-8. https://doi.org/10.3390/ma14247575
[16] M.I. Valerio-cuadros, D. Araujo, D. Chaves, F. Colauto, A. Augusta, M. De Oliveira, A. Marcos, H. De Andrade, T.H. Johansen, W.A. Ortiz, M. Motta, Superconducting Properties and Electron Scattering Mechanisms in a Nb Film with a Single Weak-Link Excavated by Focused Ion Beam, (2021). https://doi.org/10.3390/ma14237274
[17] B. Douine, K. Berger, Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application magnetic, (2021). https://doi.org/10.3390/ma14071636
[18] W.A. Cooper, D. Brunetti, G. Tei, M. Nakatani, Vortices in a wedge made of a type-I superconductor Vortices in a wedge made of a type-I superconductor, (2015).
[19] J. Geng, J.M. Brooks, C.W. Bumby, R.A. Badcock, Time-varying magnetic field induced electric field across a superconducting loop : beyond dynamic, (2018).
[20] H. Matsuhata, C. Lee, K. Kihou, H. Eisaki, by electron microscopy, (2008) 1-2.
[21] J.R. Clem, S. Y, Flux-Line-Cutting Threshold in Type II Superconductors *, 39 (1980). https://doi.org/10.1007/BF00118073
[22] C.J. Boulter, J.O. Indekeu, Interfacial Tension and Interface Delocalization Phase, 19 (1998) 857-865. https://doi.org/10.1023/A:1022695023687
[23] J.G. Bednorz, K.A. Miiller, Condensed Matt Possible High T c Superconductivity in the Ba – L a – C u – 0 System, 193 (1986) 189-193. https://doi.org/10.1007/BF01303701
[24] X. Xu, M.D. Sumption, X. Peng, Internally Oxidized Nb 3 Sn Strands with Fine Grain Size and High Critical Current Density, (2015) 1346-1350. https://doi.org/10.1002/adma.201404335
[25] M. Santosh, Modeling of Critical Current Density of Bulk High T c Superconductors, 126 (2014) 808-810. https://doi.org/10.12693/APhysPolA.126.808
[26] R. Hott, R. Kleiner, T. Wolf, G. Zwicknagl, Review on Superconducting Materials, (1933) 1-59. https://doi.org/10.1002/3527600434.eap790
[27] R. Hott, R. Kleiner, T. Wolf, G. Zwicknagl, Review on Superconducting Materials Review on Superconducting Materials, 2016. https://doi.org/10.1002/3527600434.eap790
[28] Y. Zhang, X. Xu, Original Contributions, 112 (2021) 2-9.
[29] C. Yao, Y. Ma, iScience ll Superconducting materials : Challenges and opportunities for large-scale applications, ISCIENCE. 24 (2021) 102541. https://doi.org/10.1016/j.isci.2021.102541
[30] G. Gao, L. Wang, M. Li, J. Zhang, R.T. Howie, E. Gregoryanz, V. V Struzhkin, L. Wang, J.S. Tse, Superconducting binary hydrides : Theoretical predictions and experimental progresses, Mater. Today Phys. 21 (2021) 100546. https://doi.org/10.1016/j.mtphys.2021.100546
[31] A. Zhang, W. Jiang, X. Chen, X. Zhang, W. Lu, F. Chen, Z. Feng, S. Cao, J. Zhang, J. Ge, Anomalous magnetization jumps in granular Pb superconducting films, Curr. Appl. Phys. 35 (2022) 32-37. https://doi.org/10.1016/j.cap.2021.11.010
[32] Y. Artzi, Y. Yishay, M. Fanciulli, M. Jbara, A. Blank, Superconducting micro-resonators for electron spin resonance – the good , the bad , and the future, J. Magn. Reson. 334 (2022) 107102. https://doi.org/10.1016/j.jmr.2021.107102
[33] H. Fallah-arani, A. Sedghi, S. Baghshahi, R.S. Moakhar, N. Riahi-noori, N.J. Nodoushan, Bi-2223 superconductor ceramics added with cubic-shaped TiO2 nanoparticles_ Structural, microstructural, magnetic, and vortex pinning studies, J. Alloys Compd. 900 (2022) 163201. https://doi.org/10.1016/j.jallcom.2021.163201
[34] C. Yang, X. Yu, L. Liu, Z. Yu, Y. Chen, Y. Zhang, X. Pan, G. Yan, Y. Feng, Y. Zhao, Superconducting property improvement of RHQT Nb 3 Al wires through doping of Ti, J. Alloys Compd. 832 (2020) 154561. https://doi.org/10.1016/j.jallcom.2020.154561
[35] V.I. Kuznetsov, O. V Trofimov, Critical temperatures and critical currents of wide and narrow quasi-one-dimensional superconducting aluminum structures in zero magnetic field, Phys. C Supercond. Its Appl. (2022) 1354030. https://doi.org/10.1016/j.physc.2022.1354030
[36] R. Idczak, W. Nowak, M. Babij, V.H. Tran, Type-II superconductivity in cold-rolled tantalum, Phys. Lett. A. 384 (2020) 126750. https://doi.org/10.1016/j.physleta.2020.126750
[37] R. Idczak, W. Nowak, M. Babij, V.H. Tran, Physica C : Superconductivity and its applications Influence of severe plastic deformation on superconducting properties of Re and In, Phys. C Supercond. Its Appl. 590 (2021) 1353945. https://doi.org/10.1016/j.physc.2021.1353945
[38] C. Guo, H. Wang, X. Cai, W. Luo, Z. Huang, Y. Zhang, Q. Feng, Z. Gan, Physica C : Superconductivity and its applications High performance superconducting joint for MgB 2 films, Phys. C Supercond. Its Appl. 584 (2021) 1353863. https://doi.org/10.1016/j.physc.2021.1353863
[39] K. Van Bockstal, M. Slodička, Journal of Computational and Applied Error estimates for the full discretization of a nonlocal parabolic model for type-I superconductors, J. Comput. Appl. Math. 275 (2015) 516-526. https://doi.org/10.1016/j.cam.2014.01.022
[40] I.G. De Oliveira, L.R. Cadorim, A.R.D.C. Romaguera, E. Sardella, R.R. Gomes, M.M. Doria, The spike state in type-I mesoscopic superconductor, Phys. Lett. A. 406 (2021) 127457. https://doi.org/10.1016/j.physleta.2021.127457
[41] C.M.A. Lopes, M.I. Felisberti, Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging, J. Appl. Polym. Sci. 101 (2006) 3183-3191. https://doi.org/10.1002/app.23406
[42] I.G. De Oliveira, The threshold temperature where type-I and type-II interchange in mesoscopic superconductors at the Bogomolnyi limit, Phys. Lett. A. 381 (2017) 1248-1254.. https://doi.org/10.1016/j.physleta.2017.01.032
[43] R. Folk, D. V Shopova, D.I. Uzunov, Fluctuation induced first order phase transition in thin films of type I superconductors, 281 (2001) 197-202. https://doi.org/10.1016/S0375-9601(01)00126-8
[44] V. Ya, R. Ya, ScienceDirect Solar sail with superconducting circular current-carrying wire, Adv. Sp. Res. 69 (2022) 664-676. https://doi.org/10.1016/j.asr.2021.10.052
[45] M. Balog, A. Rosova, B. Szundiova, L. Orovcik, P. Krizik, P. Svec, M. Kulich, L. Kopera, P. Kovac, I. Husek, A. Mohamed, H. Ibrahim, HITEMAL-an outer sheath material for MgB 2 superconductor wires : The effect of annealing at 595 – 655 ° C on the microstructure and properties, Mater. Des. 157 (2018) 12-23. https://doi.org/10.1016/j.matdes.2018.07.033
[46] N. Ishikawa, Defect production and recovery in high- T c superconductors irradiated with electrons and ions at low temperature, 263 (1998) 1924-1928. https://doi.org/10.1016/S0022-3115(98)00224-4
[47] S. Kumar, A.S. Dhavale, N.M. Chavan, S. Acharya, Superconducting niobium coating deposited using cold spray, Mater. Lett. 312 (2022) 131715. https://doi.org/10.1016/j.matlet.2022.131715
[48] X. Zou, W. Zhang, Q. Wang, L. Zheng, X. Yu, Z. Yu, H. Zhang, Y. Zhao, Preparation of MgB 2 superconducting wires by the rapid heating and quenching method, Mater. Lett. 244 (2019) 111-114. https://doi.org/10.1016/j.matlet.2019.02.067
[49] K.U. Leuven, R. Leiden, Wetting, prewetting and surface transitions in type-I superconductors, 251 (1995) 290-306. https://doi.org/10.1016/0921-4534(95)00421-1
[50] P. Wanderer, M.D. Anerella, A.F. Greene, E. Kelly, E. Willen, CQa transfer for industrial production of superconducting, (1995).
[51] R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, S. Gröblacher, Remote quantum entanglement between two micromechanical oscillators, Nature. 556 (2018) 473-477. https://doi.org/10.1038/s41586-018-0036-z
[52] N.M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Experimental comparison of two quantum computing architectures, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 3305-3310. https://doi.org/10.1073/pnas.1618020114
[53] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J.Y. Mutus, M. Neeley, C. Neill, P.J.J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T.C. White, E. Solano, H. Neven, J.M. Martinis, Digitized adiabatic quantum computing with a superconducting circuit, Nature. 534 (2016) 222-226. https://doi.org/10.1038/nature17658
[54] J.M. Gambetta, J.M. Chow, M. Steffen, Building logical qubits in a superconducting quantum computing system, Npj Quantum Inf. 3 (2017) 0-1. https://doi.org/10.1038/s41534-016-0004-0
[55] L. Dicarlo, M.D. Reed, L. Sun, B.R. Johnson, J.M. Chow, J.M. Gambetta, L. Frunzio, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature. 467 (2010) 574-578. https://doi.org/10.1038/nature09416
[56] J.R. Schrieffer, Theory of super conductivity, Theory Supercond. (2018) 1-332. https://doi.org/10.1201/9780429495700
[57] J.F. Clark, F.J. Pinski, D.D. Johnson, P.A. Sterne, J.B. Staunton, B. Ginatempo, van Hove singularity induced L11 ordering in CuPt, Phys. Rev. Lett. 74 (1995) 3225-3228. https://doi.org/10.1103/PhysRevLett.74.3225
[58] J. Appel, Transition temperature of d-f-band superconductors, Phys. Rev. B. 8 (1973) 1079-1087. https://doi.org/10.1103/PhysRevB.8.1079
[59] P.B. Allen, Fermi-surface harmonics: A general method for nonspherical problems. Application to Boltzmann and Eliashberg equations, Phys. Rev. B. 13 (1976) 1416-1427. https://doi.org/10.1103/PhysRevB.13.1416
[60] L.R. Testardi, Structural instability and superconductivity in A-15 compounds, Rev. Mod. Phys. 47 (1975) 637-648. https://doi.org/10.1103/RevModPhys.47.637
[61] A. Ślebarski, P. Zajdel, M. Fijałkowski, M.M. Maśka, P. Witas, J. Goraus, Y. Fang, D.C. Arnold, M.B. Maple, The effective increase in atomic scale disorder by doping and superconductivity in Ca3Rh4Sn13, New J. Phys. 20 (2018). https://doi.org/10.1088/1367-2630/aae4a8
[62] H. Hayamizu, N. Kase, J. Akimitsu, Superconducting properties of Ca3T4Sn13 (T = Co, Rh, and Ir), J. Phys. Soc. Japan. 80 (2011) 2010-2012. https://doi.org/10.1143/JPSJS.80SA.SA114
[63] A.W. Sleight, J.L. Gillson, P.E. Bierstedt, High-temp SC in the BaPbBiO3 system, Solid State Commun. 88 (1993) 841-842. https://doi.org/10.1016/0038-1098(93)90253-J
[64] R.J. Cava, B. Batlogg, J.J. Krajewski, R. Farrow, L.W. Rupp, A.E. White, K. Short, W.F. Peck, T. Kometani, Superconductivity near 30 K without copper: The Ba0.6K 0.4BiO3 perovskite, Nature. 332 (1988) 814-816. https://doi.org/10.1038/332814a0
[65] J.S. Manser, J.A. Christians, P. V. Kamat, Intriguing Optoelectronic Properties of Metal Halide Perovskites, Chem. Rev. 116 (2016) 12956-13008. https://doi.org/10.1021/acs.chemrev.6b00136
[66] Fischer, A. Treyvaud, R. Chevrel, M. Sergent, Superconductivity in the RExMo6S8, Solid State Commun. 88 (1993) 867-870. https://doi.org/10.1016/0038-1098(93)90259-P
[67] R. Chevrel, M. Sergent, J. Prigent, Sur de nouvelles phases sulfurées ternaires du molybdène, J. Solid State Chem. 3 (1971) 515-519. https://doi.org/10.1016/0022-4596(71)90095-8
[68] X. Xiong, Q. Wang, F. Yang, J. Feng, C. Li, G. Yan, Physica C : Superconductivity and its applications Improved superconducting properties of multifilament internal Mg diffusion processed MgB 2 wires by rapid thermal processing, Phys. C Supercond. Its Appl. 580 (2021) 1353800. https://doi.org/10.1016/j.physc.2020.1353800
[69] K. Nakamura, T. Takao, T. Ikeda, T. Higuchi, K. Tagawa, G. Iwaki, A. Description, Nb 3 Al Wire Development for Future Accelerator Magnets, 16 (2006) 1204-1207. https://doi.org/10.1109/TASC.2006.871298
[70] W. Bang, T.D. Morrison, K.D.D. Rathnayaka, I.F. Lyuksyutov, D.G. Naugle, W. Teizer, Characterization of superconducting Sn thin films and their application to ferromagnet-superconductor hybrids, Thin Solid Films. 676 (2019) 138-143. https://doi.org/10.1016/j.tsf.2019.02.033
[71] S. Farinon, T. Boutboul, A. Devred, D. Leroy, L. Oberli, Nb3Sn wire layout optimization to reducen cabling degradation, IEEE Trans. Appl. Supercond. 18 (2008) 984-988. https://doi.org/10.1109/TASC.2008.922299
[72] D.R. Dietderich, A. Godeke, Nb3Sn research and development in the USA – Wires and cables, Cryogenics (Guildf). 48 (2008) 331-340. https://doi.org/10.1016/j.cryogenics.2008.05.004
[73] J.P. Wu, H. Sen Chu, Substrate effects on intrinsic thermal stability and quench recovery for thin-film superconductors, Cryogenics (Guildf). 36 (1996) 925-935. https://doi.org/10.1016/S0011-2275(96)00083-5
[74] N.A. Khan, M. Mumtaz, How grain-boundaries influence the intergranular critical current density of Cu 1-xTl xBa 2Ca 3 Cu 4O 12-δ superconductor thin films?, J. Low Temp. Phys. 151 (2008) 1221-1229. https://doi.org/10.1007/s10909-008-9801-y
[75] A. Andreone, C. Aruta, M. Iavarone, F. Palomba, M.L. Russo, Microwave properties of RE – Ni 2 B 2 C ž RE s Y , Er / superconducting thin films, Scan. Electron Microsc. (1999) 141-149. https://doi.org/10.1016/S0921-4534(99)00305-6
[76] G. Ciovati, G. Cheng, U. Pudasaini, R.A. Rimmer, Multi-metallic conduction cooled superconducting radio-frequency cavity with high thermal stability, Supercond. Sci. Technol. 33 (2020). https://doi.org/10.1088/1361-6668/ab8d98
[77] E. Lugscheider, T. Weber, Coating technology, Fresenius’ Zeitschrift Für Anal. Chemie. 333 (1989) 293-298. https://doi.org/10.1007/BF00572307
[78] K. Makise, T. Kawaguti, B. Shinozaki, Superconductor-insulator transitions in quench-condensed Bi films on different underlayers, Phys. E Low-Dimensional Syst. Nanostructures. 39 (2007) 30-36. https://doi.org/10.1016/j.physe.2006.12.040
[79] J. H. Durrell1 , M. D. Ainslie , D. Zhou, P. Vanderbemden, T. Bradshaw, S. Speller, M. Filipenko, D. A. Cardwell, Bulk superconductors: a roadmap to applications, Supercond. Sci. Technol. 31 (2018) 103501 https://doi.org/10.1088/1361-6668/aad7ce
[80] M. Chen, L. Donzel, M. Lakner, W. Paul, High temperature superconductors for power applications, Journal of the European Ceramic Society 24 (2004) 1815-1822. https://doi.org/10.1016/S0955-2219(03)00443-6