Bulk Superconductors: Materials and Applications


Bulk Superconductors: Materials and Applications

Prashant Hitaishi, Rohit Verma, Parul Khurana and Sheenam Thatai

Bulk or high temperature superconductors are materials that are not perfect diamagnetic, but attain zero resistivity or infinite conductivity below a well-defined temperature known as critical temperature (TC). In the presence of external magnetic field, such material exhibit two critical field values HC1 and HC2. These materials may exist in three different states: superconducting, vortex or mixed and normal state depending upon the intensity of the applied field. The principal application of such SCs is in compact strong and stable field permanent magnets, and the magnetic flux density of these magnets is much higher than conventional permanent magnets. This chapter has discussed various types of high-temperature superconductors, their physical properties, applications, and recent research in the field.

Superconductors, Type-II, Bulk or High Temperature Superconductors, Vortex State, Oxide, Cuprates, High Field Magnets, Applications of Superconductor

Published online 10/5/2022, 15 pages

Citation: Prashant Hitaishi, Rohit Verma, Parul Khurana and Sheenam Thatai, Bulk Superconductors: Materials and Applications, Materials Research Foundations, Vol. 132, pp 131-145, 2022

DOI: https://doi.org/10.21741/9781644902110-7

Part of the book on Superconductors

[1] Rohlf, J. W. “Wiley: Modern Physics from alpha to Z0-James William Rohlf.” (1994).
[2] T.P. Sheahen, Introduction to High-Temperature Superconductivity, Introd. to High-Temperature Supercond. (2002). https://doi.org/10.1007/B115100. https://doi.org/10.1007/b115100
[3] J.G. Bednorz, K.A. Müller, Possible highT c superconductivity in the Ba−La−Cu−O system, Zeitschrift Für Phys. B Condens. Matter 1986 642. 64 (1986) 189-193. https://doi.org/10.1007/BF01303701. https://doi.org/10.1007/BF01303701
[4] E. Kurbatova, P. Kurbatov, M. Sysoev, Bulk High-Temperature Superconductors: Simulation of Electromagnetic Properties, Prop. Nov. Supercond. (2020). https://doi.org/10.5772/INTECHOPEN.92452. https://doi.org/10.5772/intechopen.92452
[5] B.T. Matthias, M. Marezio, E. Corenzwit, A.S. Cooper, H.E. Barz, High-Temperature Superconductors, the First Ternary System, Science (80-. ). 175 (1972) 1465-1466. https://doi.org/10.1126/SCIENCE.175.4029.1465. https://doi.org/10.1126/science.175.4029.1465
[6] H.E. Barz, A.S. Cooper, E. Corenzwit, M. Marezio, B.T. Matthias, P.H. Schmidt, Superconductivity of Double Chalcogenides: Lix Ti1.1S2, Science (80-. ). 175 (1972) 884-885. https://doi.org/10.1126/SCIENCE.175.4024.884. https://doi.org/10.1126/science.175.4024.884
[7] J.N. RJABININ, L.W. SHUBNIKOW, Magnetic Properties and Critical Currents of Supra-conducting Alloys, Nat. 1935 1353415. 135 (1935) 581-582. https://doi.org/10.1038/135581a0. https://doi.org/10.1038/135581a0
[8] H.R.S. Moura, L. de Moura, Melting And Purification Of Niobium, AIP Conf. Proc. 927 (2007) 165. https://doi.org/10.1063/1.2770689. https://doi.org/10.1063/1.2770689
[9] M. Peiniger, H. Piel, A superconducting nb3sn coated multicell accelerating cavity, IEEE Trans. Nucl. Sci. 32 (1985) 3610-3612. https://doi.org/10.1109/TNS.1985.4334443. https://doi.org/10.1109/TNS.1985.4334443
[10] Y.M. Shy, L.E. Toth, R. Somasundaram, Superconducting properties, electrical resistivities, and structure of NbN thin films, J. Appl. Phys. 44 (2003) 5539. https://doi.org/10.1063/1.1662193. https://doi.org/10.1063/1.1662193
[11] G. Grunblatt, P. Mocaer, C. Verwaerde, C. Kohler, A success story: LHC cable production at ALSTOM-MSA, Fusion Eng. Des. 75-79 (2005) 1-5. https://doi.org/10.1016/J.FUSENGDES.2005.06.216. https://doi.org/10.1016/j.fusengdes.2005.06.216
[12] B.A. Glowacki, X.Y. Yan, D. Fray, G. Chen, M. Majoros, Y. Shi, Niobium based intermetallics as a source of high-current/high magnetic field superconductors, Phys. C Supercond. 372-376 (2002) 1315-1320. https://doi.org/10.1016/S0921-4534(02)01018-3. https://doi.org/10.1016/S0921-4534(02)01018-3
[13] J.L.H. Lindenhovius, E.M. Hornsveld, A. Den Ouden, W.A.J. Wessel, H.H.J. Ten Kate, PowderinTube (PIT) Nb3Sn conductors for highfield magnets, IEEE Trans. Appl. Supercond. 10 (2000) 975978. https://doi.org/10.1109/77.828394. https://doi.org/10.1109/77.828394
[14] Z. Wang, A. Kawakami, Y. Uzawa, B. Komiyama, Superconducting properties and crystal structures of single‐crystal niobium nitride thin films deposited at ambient substrate temperature, J. Appl. Phys. 79 (1998) 7837. https://doi.org/10.1063/1.362392. https://doi.org/10.1063/1.362392
[15] D.C. Johnston, H. Prakash, W.H. Zachariasen, R. Viswanathan, High temperature superconductivity in the LiTiO ternary system, Mater. Res. Bull. 8 (1973) 777-784. https://doi.org/10.1016/0025-5408(73)90183-9. https://doi.org/10.1016/0025-5408(73)90183-9
[16] A.W. Sleight, J.L. Gillson, P.E. Bierstedt, High-temperature superconductivity in the BaPb1-xBixO3 systems, Solid State Commun. 17 (1975) 27-28. https://doi.org/10.1016/0038-1098(75)90327-0. https://doi.org/10.1016/0038-1098(75)90327-0
[17] R.-P. Sawh, R. Weinstein, K. Carpenter, D. Parks, K. Davey, Production run of 2 cm diameter YBCO trapped field magnets with surface field of 2 T at 77 K, Supercond. Sci. Technol. 26 (2013) 105014. https://doi.org/10.1088/0953-2048/26/10/105014. https://doi.org/10.1088/0953-2048/26/10/105014
[18] S. Nariki, N. Sakai, M. Murakami, Melt-processed Gd-Ba-Cu-O superconductor with trapped field of 3 T at 77 K, Supercond. Sci. Technol. 18 (2004) S126. https://doi.org/10.1088/0953-2048/18/2/026. https://doi.org/10.1088/0953-2048/18/2/026
[19] M. Tomita, M. Murakami, High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K, Nat. 2003 4216922. 421 (2003) 517-520. https://doi.org/10.1038/nature01350. https://doi.org/10.1038/nature01350
[20] J.H. Durrell, A.R. Dennis, J. Jaroszynski, M.D. Ainslie, K.G.B. Palmer, Y.-H. Shi, A.M. Campbell, J. Hull, M. Strasik, E.E. Hellstrom, D.A. Cardwell, A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel, Supercond. Sci. Technol. 27 (2014) 082001. https://doi.org/10.1088/0953-2048/27/8/082001. https://doi.org/10.1088/0953-2048/27/8/082001
[21] C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau, Superconductivity in the Bi – Sr – Cu – O system, Zeitschrift Für Phys. B Condens. Matter. 68 (1987) 421-423. https://doi.org/10.1007/BF01471071. https://doi.org/10.1007/BF01471071
[22] W. Miller, K. Borówko, M. Gazda, S. Stizza, R. Natali, Proceedings of the XI National School “Collective Phenomena and Their Competition, Kazimierz Dolny. 109 (2006). https://doi.org/10.12693/APhysPolA.109.627
[23] S.S.P. Parkin, V.Y. Lee, E.M. Engler, A.I. Nazzal, T.C. Huang, G. Gorman, R. Savoy, R. Beyers, Bulk Superconductivity at 125 K in