Superconductors for Large-Scale Applications


Superconductors for Large-Scale Applications

Subhojit Bose, Sarit Chakraborty, Biplab Roy and Pinku Chandra Nath

The discovery of superconducting material and its synthesis leads to several advantages application in the modern developing society. The advantages of superconducting material cover a broad area of research. In superconductors, one of the characteristics that distinguish them is their critical temperature. This temperature specifies the range and kind of superconducting materials that may be used in industrial applications and generate profit. In this chapter, some of the advantageous applications of semiconducting materials are discussed that includes the magnetic levitation train, the nuclear magnetic resonance, superconducting magnetic energy storage (SMES), and the transmission of electrical energy. Furthermore, advantageous use of fast-field cyclic nuclear magnetic resonance which benefits from superconducting blocks is presented. The unexpected discovery of superconducting materials also sparked the research in fundamental physics, material science and advantageous technological application to improve the quality of daily human life.

Superconductors, SMES, Electrical Energy, Semiconducting Materials, Transmission

Published online 10/5/2022, 18 pages

Citation: Subhojit Bose, Sarit Chakraborty, Biplab Roy and Pinku Chandra Nath, Superconductors for Large-Scale Applications, Materials Research Foundations, Vol. 132, pp 79-96, 2022


Part of the book on Superconductors

[1] P.F. Dahl, Kamerlingh Onnes and the Discovery of Superconductivity: The Leyden Years, 1911-1914, Hist. Stud. Phys. Sci. 15 (1984) 1-37.
[2] D. van Delft, P. Kes, The discovery of superconductivity, Phys. Today. 63 (2010) 38-43.
[3] S.M. Anlage, The physics and applications of superconducting metamaterials, J. Opt. 13 (2011) 024001.
[4] H. Rogalla, P.H. Kes, 100 Years of Superconductivity, CRC Press, 2011: pp. 864.
[5] C. Wang, D. Zhang, G. Fu, J.P. Wu, Analytical Study of the Holographic Superconductor from Higher Derivative Theory, Adv. High Energy Phys. 2020 (2020) 1-10.
[6] J.R. Hull, M. Murakami, Applications of bulk high-temperature Superconductors, Proc. IEEE. 92 (2004) 1705-1718.
[7] R.L. Fagaly, Superconducting quantum interference device instruments and applications, Rev. Sci. Instrum. 77 (2006) 101101.
[8] M. Bäcker, Energy and superconductors – applications of high-temperature-superconductors, Zeitschrift Für Krist. 226 (2011).
[9] P. Komarek, Advances in large scale applications of superconductors, Supercond. Sci. Technol. 13 (2000) 456-459.
[10] L. Rossi, L. Bottura, Superconducting Magnets for Particle Accelerators, Rev. Accel. Sci. Technol. 05 (2012) 51-89.
[11] R.G. Sharma, The Phenomenon of Superconductivity and Type II Superconductors, in: 2021: pp. 15-72.
[12] S.R. Shinde, S.B. Ogale, R.L. Greene, T. Venkatesan, P.C. Canfield, S.L. Bud’ko, G. Lapertot, C. Petrovic, Superconducting MgB2 thin films by pulsed laser deposition, Appl. Phys. Lett. 79 (2001) 227-229.
[13] V.G. Prokhorov, V.L. Svetchnikov, J.S. Park, G.H. Kim, Y.P. Lee, J.-H. Kang, V.A. Khokhlov, P. Mikheenko, Flux pinning and the paramagnetic Meissner effect in MgB 2 with TiO 2 inclusions, Supercond. Sci. Technol. 22 (2009) 045027.
[14] Q. Wang, Z. Ni, C. Cui, Superconducting Magnet Technology and Applications, in: Supercond. – Mater. Prop. Appl., InTech, 2012.
[15] S. Deng, C. Felser, J. Köhler, A Reverse Approach to Superconductivity, J. Mod. Phys. 04 (2013) 10-13.
[16] B. Rosenstein, D. Li, Ginzburg-Landau theory of type II superconductors in magnetic field, Rev. Mod. Phys. 82 (2010) 109-168.
[17] A. Martinelli, F. Bernardini, S. Massidda, The phase diagrams of iron-based superconductors: Theory and experiments, Comptes Rendus Phys. 17 (2016) 5-35.
[18] A. Roque, D.M. Sousa, V. Fernão Pires, E. Margato, Superconductivity and their Applications, Renew. Energy Power Qual. J. 1 (2017) 322-327.
[19] J.R. Hull, Applications of high-temperature superconductors in power technology, Reports Prog. Phys. 66 (2003) 1865-1886.
[20] D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, High-T c superconducting materials for electric power applications, in: Mater. Sustain. Energy, Co-Published with Macmillan Publishers Ltd, UK, 2010: pp. 311-320.
[21] M. Noe, M. Steurer, High-temperature superconductor fault current limiters: concepts, applications, and development status, Supercond. Sci. Technol. 20 (2007) R15-R29.
[22] M.W. Rupich, Second-generation (2G) coated high-temperature superconducting cables and wires for power grid applications, in: Supercond. Power Grid, Elsevier, 2015: pp. 97-130.
[23] M. Ikram, A. Raza, S. Altaf, A. Ahmed Rafi, M. Naz, S. Ali, S. Ossama Ali Ahmad, A. Khalid, S. Ali, J. Haider, High Temperature Superconductors, in: Transit. Met. Compd. – Synth. Prop. Appl., IntechOpen, 2021.
[24] L. Shao, M. Ehrgott, An approximation algorithm for convex multiplicative programming problems, in: 2011 IEEE Symp. Comput. Intell. Multicriteria Decis., IEEE, 2011: pp. 175-181.
[25] R. Schlosser, H. Schmidt, M. Leghissa, M. Meinert, Development of high-temperature superconducting transformers for railway applications, IEEE Trans. Appiled Supercond. 13 (2003) 2325-2330.
[26] S. Mishra, T.A. Lipo, S. V. Pamidi, Design and analysis of a novel brushlesshigh temperature superconducting synchronous machine, in: 2017 IEEE Int. Electr. Mach. Drives Conf., IEEE, 2017: pp. 1-6.
[27] K. Ilieva, O. Dinolov, State-of-the-art of superconducting materials and their energy-efficiency applications, in: 2020 7th Int. Conf. Energy Effic. Agric. Eng., IEEE, 2020: pp. 1-5.
[28] X. Li, Superconducting Devices in Wind Farm, in: Wind Energy Manag. 2011: pp. 140.
[29] S. Mishra, T.A. Lipo, S. V. Pamidi, Design and analysis of a novel brushlesshigh temperature superconducting synchronous machine, in: 2017 IEEE Int. Electr. Mach. Drives Conf., IEEE, 2017: pp. 1-6.
[30] X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy. 137 (2015) 511-536.
[31] P.F. Ribeiro, B.K. Johnson, M.L. Crow, A. Arsoy, Y. Liu, Energy storage systems for advanced power applications, Proc. IEEE. 89 (2001) 1744-1756.
[32] H. Yaghoubi, The Most Important Maglev Applications, J. Eng. 2013 (2013) 1-19.
[33] A.B. Holder, H. Keller, High-temperature superconductors: underlying physics and application, Z. Naturforsch. B. 75 (2020) 3-14.
[34] M. Suenaga, Metallurgy of Continuous Filamentary A15 Superconductors in Materials Science, in: Plenum Press, Springer, New York, London, 68 (1981).
[35] J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba−La−Cu−O system, Z. Phys. B Condens. Matter. 64 (1986) 189-193.
[36] P.N. Barnes, J.W. Kell, B.C. Harrison, T.J. Haugan, Minute doping with deleterious rare earths in YBa2Cu3O7− YBa2Cu3O7−δ films for flux pinning enhancements, Appl. Phys. Lett. 89 (2006) 012503.
[37] S.P. Singh, R.K. Pandey, P. Singh, Cooper pair breaking and isotope effect coefficient variation in high-T c superconductors, J. Supercond. 9 (1996) 269-271.
[38] H.S. Han, B.H. Yim, N.J. Lee, Y.J. Kim, Prediction of ride quality of a Maglev vehicle using a fullvehicle multi-body dynamic model, Veh. Syst. Dyn. 47 (2009) 1271-1286.
[39] Z. Wang, X. Li, Y. Xie, Z. Long, Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator, Sensors. 18 (2018) 1697.
[40] H. Almujibah, J. Preston, The total social costs of constructing and operating a maglev line using a case study of the riyadh-dammam corridor, Saudi Arabia, Transp. Syst. Technol. 4 (2018) 298-327.
[41] S. Rao, M. Brüggen, J. Liske, Detection of gravitational waves in circular particle accelerators, Phys. Rev. D. 102 (2020) 122006.
[42] S.A. Gourlay, Superconducting accelerator magnet technology in the 21st century: A new paradigm on the horizon?, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 893 (2018) 124-137.
[43] E. Moser, E. Laistler, F. Schmitt, G. Kontaxis, Ultra-High Field NMR and MRI-The Role of Magnet Technology to Increase Sensitivity and Specificity, Front. Phys. 5 (2017).
[44] C.M. Quinn, M. Wang, T. Polenova, NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology, in: Protein NMR, 2018: pp. 1-35.
[45] W. Braun, G. Wider, K.H. Lee, K. Wüthrich, Conformation of Glucagon in a Lipid-Water Interphase by 1H Nuclear Magnetic Resonance, in: NMR in Structural Biology, 1995: pp. 264-291.
[46] R.L. Bernays, E.R. Laws, Intraoperative Diagnostic and Interventional Magnetic Resonance Imaging in Neurosurgery, Neurosurgery. 41 (1997) 999-999.
[47] B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici, Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Adv. Mater. 22 (2010) 813-828.
[48] S. Schaffer, Physics Laboratories and the Victorian Country House, in: Mak. Sp. Sci., Palgrave Macmillan UK, London, 1998: pp. 149-180.
[49] L. Bertora, MRI Magnets based on MgB2, in: MgB2 Superconducting Wires, 2016: pp. 485-536.
[50] S.S. Kalsi, K. Weeber, H. Takesue, C. Lewis, H.-W. Neumueller, R.D. Blaugher, Development status of rotating machines employing superconducting field windings, Proc. IEEE. 92 (2004) 1688-1704.
[51] S. Anders, M.G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H.J.M. ter Brake, H. Toepfer, J.-C. Villegier, A.M. Zagoskin, A.B. Zorin, European roadmap on superconductive electronics – status and perspectives, Phys. C Supercond. 470 (2010) 2079-2126.
[52] A.E. Berns, S. Bubici, C. De Pasquale, G. Alonzo, P. Conte, Applicability of solid state fast field cycling NMR relaxometry in understanding relaxation properties of leaves and leaf-litters, Org. Geochem. 42 (2011) 978-984.
[53] D.M. Sousa, G.D. Marques, P.J. Sebastião, A.C. Ribeiro, New isolated gate bipolar transistor two-quadrant chopper power supply for a fast field cycling nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 74 (2003) 4521-4528.
[54] P. Conte, V. Ferro, Measuring hydrological connectivity inside a soil by low field nuclear magnetic resonance relaxometry, Hydrol. Process. 32 (2018) 93-101.
[55] G. Parigi, E. Ravera, M. Fragai, C. Luchinat, Unveiling protein dynamics in solution with field-cycling NMR relaxometry, Prog. Nucl. Magn. Reson. Spectrosc. 124-125 (2021) 85-98.
[56] N. Abhyankar, V. Szalai, Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy, J. Phys. Chem. B. 125 (2021) 5171-5190.
[57] Z. Yang, L. Zhang, Magnetic Actuation Systems for Miniature Robots: A Review, Adv. Intell. Syst. 2 (2020) 2000082.
[58] K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao, Y. Hou, Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications, Acc. Chem. Res. 51 (2018) 404-413.
[59] F. Najmabadi, Spherical torus concept as power plants-the ARIES-ST study, Fusion Eng. Des. 65 (2003) 143-164.
[60] W.K. Peng, L. Chen, J. Han, Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis, Rev. Sci. Instrum. 83 (2012) 095115.
[61] A. Roque, D.M. Sousa, E. Margato, V. Malo Machado, P.J. Sebastiao, G.D. Marques, Magnetic Flux Density Distribution in the Air Gap of a Ferromagnetic Core With Superconducting Blocks: Three-Dimensional Analysis and Experimental NMR Results, IEEE Trans. Appl. Supercond. 25 (2015) 1-9.
[62] W.V. Hassenzahl, D.W. Hazelton, B.K. Johnson, P. Komarek, M. Noe, C.T. Reis, Electric power applications of superconductivity, Proc. IEEE. 92 (2004) 1655-1674.
[63] Z.S. Hartwig, C.B. Haakonsen, R.T. Mumgaard, L. Bromberg, An initial study of demountable high-temperature superconducting toroidal field magnets for the Vulcan tokamak conceptual design, Fusion Eng. Des. 87 (2012) 201-214.
[64] B.I. Oladapo, S.A. Zahedi, S.C. Chaluvadi, S.S. Bollapalli, M. Ismail, Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography, Biomed. Signal Process. Control. 46 (2018) 116-120.
[65] R. Kleiner, D. Koelle, F. Ludwig, J. Clarke, Superconducting quantum interference devices: State of the art and applications, Proc. IEEE. 92 (2004) 1534-1548.
[66] T. Schwarz, J. Nagel, R. Wölbing, M. Kemmler, R. Kleiner, D. Koelle, Low-Noise Nano Superconducting Quantum Interference Device Operating in Tesla Magnetic Fields, ACS Nano. 7 (2013) 844-850.
[67] C. Pfeiffer, L.M. Andersen, D. Lundqvist, M. Hämäläinen, J.F. Schneiderman, R. Oostenveld, Localizing on-scalp MEG sensors using an array of magnetic dipole coils, PLoS One. 13 (2018) 0191111.
[68] A.I. Braginski, Superconducting electronics coming to market, IEEE Trans. Appiled Supercond. 9 (1999) 2825-2836.
[69] S. Braeutigam, Magnetoencephalography: Fundamentals and Established and Emerging Clinical Applications in Radiology, ISRN Radiol. 2013 (2013) 1-18.
[70] M.K. Abadi, R. Subramanian, S.M. Kia, P. Avesani, I. Patras, N. Sebe, DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses, IEEE Trans. Affect. Comput. 6 (2015) 209-222.
[71] S. Baillet, J.C. Mosher, R.M. Leahy, Electromagnetic brain mapping, IEEE Signal Process. Mag. 18 (2001) 14-30.
[72] A. Sorriento, M.B. Porfido, S. Mazzoleni, G. Calvosa, M. Tenucci, G. Ciuti, P. Dario, Optical and Electromagnetic Tracking Systems for Biomedical Applications: A Critical Review on Potentialities and Limitations, IEEE Rev. Biomed. Eng. 13 (2020) 212-232.
[73] A.K.A. Silva, E.L. Silva, J.F. Carvalho, T.R.F. Pontes, R.P. de A. Neto, A. da S. Carriço, E.S.T. Egito, Drug Targeting and other Recent Applications of Magnetic Carriers in Therapeutics, Key Eng. Mater. 441 (2010) 357-378.
[74] G. Lembke, S.N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, G. Bison, Optical multichannel room temperature magnetic field imaging system for clinical application, Biomed. Opt. Express. 5 (2014) 876.
[75] J. Chen, J. Yang, R. Liu, C. Qiao, Z. Lu, Y. Shi, Z. Fan, Z. Zhang, X. Zhang, Dual-targeting Theranostic System with Mimicking Apoptosis to Promote Myocardial Infarction Repair via Modulation of Macrophages, Theranostics. 7 (2017) 4149-4167.
[76] S. Nishijima, S. Eckroad, A. Marian, K. Choi, W.S. Kim, M. Terai, Z. Deng, J. Zheng, J. Wang, K. Umemoto, J. Du, P. Febvre, S. Keenan, O. Mukhanov, L.D. Cooley, C.P. Foley, W.V. Hassenzahl, M. Izumi, Superconductivity and the environment: a roadmap, Supercond. Sci. Technol. 26 (2013) 113001.
[77] H. Thomas, A. Marian, A. Chervyakov, S. Stuckrad, D. Salmieri, C. Rubbia, Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?, Renew. Sust. Energ. Rev. 55 (2014) 59-72.
[78] T. Bohno, A. Tomioka, M. Imaizumi, Y. Sanuki, T. Yamamoto, Y. Yasukawa, H. Ono, Y. Yagi, K. Iwadate, Development of 66kV/6.9kV 2MVA prototype HTS power transformer, Physica C Supercond. 426-431(2005) 1402-1407.