Properties and Types of Superconductors

$30.00

Properties and Types of Superconductors

M.S. Hasan and S.S. Ali

The disappearing of electrical resistance below the critical temperature (Tc) is known as superconductivity discovered by Kamerlingh Onnes in 1911. Superconductors are consisted of two categories namely type I and type II also called soft and hard superconductors, respectively. Type I superconductors obey the Meissner effect while type II superconductors do not. The superconducting compounds are divided into three categories, (i) Metal based systems, (ii) Copper oxides (cuprates) and (iii) Iron based superconductors (IBSC). Metal-based superconductors are combination of cubic crystal configuration named the A15 structure. Initial IBSC was revealed in 2006 for LaFePO; nevertheless, Tc stayed as small as ~4 K. High-Tc compounds were then expressed for LaFeAsO1–xFx by means of Tc = 26 K in 2008. Superconductors have considerable positions in the lower temperature magnet applications such as MRI, nuclear magnetic resonance and superconducting quantum interference.

Keywords
Superconductors, Types of Superconductors, Meissner Effect, Metal Based Systems, Cuprates, IBSC

Published online 10/5/2022, 32 pages

Citation: M.S. Hasan and S.S. Ali, Properties and Types of Superconductors, Materials Research Foundations, Vol. 132, pp 17-48, 2022

DOI: https://doi.org/10.21741/9781644902110-2

Part of the book on Superconductors

References
[1] D. A. Cardwell, D. S. Ginley, Handbook of superconducting materials, CRC Press 2003. https://doi.org/10.1887/0750308982
[2] A.B. Pippard, The historical context of Josephson’s discovery, Superconductor Applications: SQUIDs and Machines, Springer1977, pp. 1-20. https://doi.org/10.1007/978-1-4684-2805-6_1
[3] A. Nikulov, The Law of Entropy Increase and the Meissner Effect, Entropy 24 (2022) 83. https://doi.org/10.3390/e24010083
[4] W. Meissner, R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit, Naturwissenschaften 21 (1933) 787-788. https://doi.org/10.1007/BF01504252
[5] A. Bleszynski-Jayich, W. Shanks, B. Peaudecerf, E. Ginossar, F. Von Oppen, L. Glazman, J. Harris, Persistent currents in normal metal rings, Science 326 (2009) 272-275. https://doi.org/10.1126/science.1178139
[6] H. Bluhm, N. C. Koshnick, J. A. Bert, M. E. Huber, K. A. Moler, Persistent currents in normal metal rings, Physical Review Letters 102 (2009) 136802. https://doi.org/10.1103/PhysRevLett.102.136802
[7] A. Burlakov, V. Gurtovoĭ, S. Dubonos, A.V. Nikulov, V. Tulin, Little-parks effect in a system of asymmetric superconducting rings, JETP Letters 86 (2007) 517-521. https://doi.org/10.1134/S0021364007200052
[8] V. Gurtovoi, S. Dubonos, A. Nikulov, N. Osipov, V. Tulin, Dependence of the magnitude and direction of the persistent current on the magnetic flux in superconducting rings, Journal of Experimental and Theoretical Physics 105 (2007) 1157-1173. https://doi.org/10.1134/S1063776107120072
[9] W. Little, R. Parks, Observation of quantum periodicity in the transition temperature of a superconducting cylinder, Physical Review Letters 9 (1962) 9. https://doi.org/10.1103/PhysRevLett.9.9
[10] J. Hirsch, Joule heating in the normal-superconductor phase transition in a magnetic field, Physica C: Superconductivity and its Applications 576 (2020) 1353687. https://doi.org/10.1016/j.physc.2020.1353687
[11] J. R. Waldram, Superconductivity of metals and cuprates, CRC Press 2017. https://doi.org/10.1201/9780203737934
[12] E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, R.P. Dias, Room-temperature superconductivity in a carbonaceous sulfur hydride, Nature 586 (2020) 373-377. https://doi.org/10.1038/s41586-020-2801-z
[13] E. Nurbaisyatul, H. Azhan, N. Ibrahim, S. Saipuddin, Structural and superconducting properties of low-density Bi (Pb)-2223 superconductor: Effect of Eu2O3 nanoparticles addition, Cryogenics 119 (2021) 103353. https://doi.org/10.1016/j.cryogenics.2021.103353
[14] H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Recent advances in iron-based superconductors toward applications, Materials today 21 (2018) 278-302. https://doi.org/10.1016/j.mattod.2017.09.006
[15] D. Van Delft, P. Kes, The discovery of superconductivity, Physics Today 63 (2010) 38-43. https://doi.org/10.1063/1.3490499
[16] J. Hirsch, M. Maple, F. Marsiglio, Superconducting materials classes: Introduction and overview, Elsevier, 2015, pp. 1-8. https://doi.org/10.1016/j.physc.2015.03.002
[17] T. Geballe, J. Hulm, Bernd Theodor Matthias, Biographical Memoirs: Volume 70 70 (1996).
[18] J.G. Bednorz, K.A. Müller, Possible highT c superconductivity in the Ba− La− Cu− O system, Zeitschrift für Physik B Condensed Matter 64 (1986) 189-193. https://doi.org/10.1007/BF01303701
[19] H. Takagi, S.-i. Uchida, K. Kitazawa, S. Tanaka, High-Tc superconductivity of La-Ba-Cu oxides. II.-specification of the superconducting phase, Japanese journal of applied physics 26 (1987) L123. https://doi.org/10.1143/JJAP.26.L123
[20] P.A. Lee, N. Nagaosa, X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Reviews of modern physics 78 (2006) 17. https://doi.org/10.1103/RevModPhys.78.17
[21] A.E. Underhill, Molecular metals and superconductors, Journal of Materials Chemistry 2 (1992) 1-11. https://doi.org/10.1039/jm9920200001
[22] H. Akamatu, H. Inokuchi, Y. Matsunaga, Electrical conductivity of the perylene-bromine complex, Nature 173 (1954) 168-169. https://doi.org/10.1038/173168a0
[23] D. Basov, A.V. Chubukov, Manifesto for a higher Tc, Nature Physics 7 (2011) 272-276. https://doi.org/10.1038/nphys1975
[24] F. Ronning, T. Klimczuk, E. D. Bauer, H. Volz, J. D. Thompson, Synthesis and properties of CaFe2As2 single crystals, Journal of Physics: Condensed Matter 20 (2008) 322201. https://doi.org/10.1088/0953-8984/20/32/322201
[25] E. Bauer, F. Ronning, B. Scott, J. Thompson, Superconductivity in SrNi2As2 single crystals, Physical Review B 78 (2008) 172504 https://doi.org/10.1103/PhysRevB.78.172504
[26] A. Subedi, D. J. Singh, Density functional study of BaNi2As2: electronic structure, phonons, and electron-phonon superconductivity, Physical Review B 78 (2008) 132511. https://doi.org/10.1103/PhysRevB.78.134514
[27] D. Hirai, F. Von Rohr, R. J. Cava, Emergence of superconductivity in BaNi2(Ge 1− xPx)2 at a structural instability, Physical Review B 86 (2012) 100505. https://doi.org/10.1103/PhysRevB.86.100505
[28] A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, D. Mandrus, Superconductivity at 22 K in Co-doped BaFe 2 As 2 crystals, Physical review letters 101 (2008) 117004. https://doi.org/10.1103/PhysRevLett.101.117004
[29] L. Shan, J. Gong, Y.-L. Wang, B. Shen, X. Hou, C. Ren, C. Li, H. Yang, H.-H. Wen, S. Li, Evidence of a spin resonance mode in the iron-based superconductor Ba0.6K0.4 Fe2As2 from scanning tunneling spectroscopy, Physical review letters 108 (2012) 227002.
[30] P.L. Alireza, Y. C. Ko, J. Gillett, C.M. Petrone, J.M. Cole, G.G. Lonzarich, S.E. Sebastian, Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures, Journal of Physics: Condensed Matter 21 (2008) 012208. https://doi.org/10.1088/0953-8984/21/1/012208
[31] C. Miclea, M. Nicklas, H. Jeevan, D. Kasinathan, Z. Hossain, H. Rosner, P. Gegenwart, C. Geibel, F. Steglich, Evidence for a reentrant superconducting state in EuFe 2 As 2 under pressure, Physical Review B 79 (2009) 212509. https://doi.org/10.1103/PhysRevB.79.212509
[32] W.O. Uhoya, J.M. Montgomery, G.M. Tsoi, Y.K. Vohra, M.A. McGuire, A.S. Sefat, B.C. Sales, S.T. Weir, Phase transition and superconductivity of SrFe2As2 under high pressure, Journal of Physics: Condensed Matter 23 (2011) 122201. https://doi.org/10.1088/0953-8984/23/12/122201
[33] W. Jeitschko, M. Reehuis, Magnetic properties of CaNi2P2 and the corresponding lanthanoid nickel phosphides with ThCr2Si2 type structure, Journal of Physics and Chemistry of Solids 48 (1987) 667-673. https://doi.org/10.1016/0022-3697(87)90157-0
[34] J. An, A.S. Sefat, D.J. Singh, M.-H. Du, Electronic structure and magnetism in BaMn 2 As 2 and BaMn 2 Sb 2, Physical Review B 79 (2009) 075120. https://doi.org/10.1103/PhysRevB.79.075120
[35] Z. Ban, M. Sikirica, The crystal structure of ternary silicides ThM2Si2 (M= Cr, Mn, Fe, Co, Ni and Cu), Acta Crystallographica 18 (1965) 594-599. https://doi.org/10.1107/S0365110X6500141X
[36] W. Jeitschko, W. Hofmann, Ternary alkaline earth and rare earth metal palladium phosphides with ThCr2Si2-and La6Ni6P17-type structures, Journal of the Less Common Metals 95 (1983) 317-322. https://doi.org/10.1016/0022-5088(83)90526-X
[37] J. Blawat, P.W. Swatek, D. Das, D. Kaczorowski, R. Jin, W. Xie, Pd-P antibonding interactions in A Pd 2 P 2 (A= Ca and Sr) superconductors, Physical Review Materials 4 (2020) 014801. https://doi.org/10.1103/PhysRevMaterials.4.014801
[38] A. Schilling, M. Cantoni, J. Guo, H. Ott, Superconductivity above 130 k in the hg-ba-ca-cu-o system, Nature 363 (1993) 56-58. https://doi.org/10.1038/363056a0
[39] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, nature 410 (2001) 63-64. https://doi.org/10.1038/35065039
[40] S.L. Bud’ko, P.C. Canfield, Superconductivity of magnesium diboride, Physica C: Superconductivity and its Applications 514 (2015) 142-151. https://doi.org/10.1016/j.physc.2015.02.024
[41] W. McMillan, Transition temperature of strong-coupled superconductors, Physical Review 167 (1968) 331. https://doi.org/10.1103/PhysRev.167.331
[42] W.E. Pickett, Design for a room-temperature superconductor, Journal of Superconductivity and Novel Magnetism 19 (2006) 291-297. https://doi.org/10.1007/s10948-006-0164-9
[43] H. Fallah-Arani, S. Baghshahi, A. Sedghi, Impact of functionalized SiC nano-whisker on the flux pinning ability and superconductor features of Bi-2223 ceramics, Ceramics International 47 (2021) 3706-3712. https://doi.org/10.1016/j.ceramint.2020.09.226
[44] M. Anis-ur-Rehman, M. Mubeen, Synthesis and enhancement of current density in cerium doped Bi (Pb) Sr (Ba)-2 2 2 3 high Tc superconductor, Synthetic Metals 162 (2012) 1769-1774. https://doi.org/10.1016/j.synthmet.2012.03.006
[45] S. Chu, M. McHenry, Critical current density in high-Tc Bi-2223 single crystals using AC and DC magnetic measurements, Physica C: Superconductivity 337 (2000) 229-233. https://doi.org/10.1016/S0921-4534(00)00107-6
[46] I. Hamadneh, A. Agil, A. Yahya, S. Halim, Superconducting properties of bulk Bi1. 6Pb0. 4Sr2Ca2− xCdxCu3O10 system prepared via conventional solid state and coprecipitation methods, Physica C: Superconductivity and its applications 463 (2007) 207-210. https://doi.org/10.1016/j.physc.2007.03.445
[47] J. Hawa, H. Azhan, S. Yahya, K. Azman, H. Hidayah, A. Norazidah, The effect of Eu substitution onto Ca site in Bi (Pb)-2223 superconductor via co-precipitation method, Journal of superconductivity and novel magnetism 26 (2013) 979-983. https://doi.org/10.1007/s10948-012-2043-x
[48] J.S. Hawa, A. Hashim, S. Yahya, A. Kasim, H.N. Hidayah, A.W. Norazidah, Properties of Rare-Earth Substitution in Bi (Pb)-2223 Superconductor Prepared by Coprecipitation Method, Advanced Materials Research, Trans Tech Publ, 2014, pp. 83-86. https://doi.org/10.4028/www.scientific.net/AMR.895.83
[49] N.H. Mohammed, R. Awad, A.I. Abou-Aly, I.H. Ibrahim, M.S. Hassan, Optimizing the preparation conditions of Bi-2223 superconducting phase using PbO and PbO 2, (2012). https://doi.org/10.4236/msa.2012.34033
[50] M. Siegal, E. Venturini, B. Morosin, T. Aselage, Synthesis and properties of Tl-Ba-Ca-Cu-O superconductors, Journal of materials research 12 (1997) 2825-2854. https://doi.org/10.1557/JMR.1997.0378
[51] Z. Silveira, R. Nicoletti, C. Fortulan, B. Purquerio, Ceramic matrices applied to aerostatic porous journal bearings: material characterization and bearing modeling, Cerâmica 56 (2010) 201-211. https://doi.org/10.1590/S0366-69132010000200016
[52] M.-K. Wu, J.R. Ashburn, C. Torng, P.-H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y. Wang, a. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical review letters 58 (1987) 908. https://doi.org/10.1103/PhysRevLett.58.908
[53] H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, A new high-Tc oxide superconductor without a rare earth element, Japanese Journal of Applied Physics 27 (1988) L209. https://doi.org/10.1143/JJAP.27.L209
[54] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, Iron-based layered superconductor: LaOFeP, Journal of the American Chemical Society 128 (2006) 10012-10013. https://doi.org/10.1021/ja063355c
[55] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La [O1-x F x] FeAs (x= 0.05− 0.12) with T c= 26 K, Journal of the American Chemical Society 130 (2008) 3296-3297. https://doi.org/10.1021/ja800073m
[56] T. Watanabe, H. Yanagi, T. Kamiya, Y. Kamihara, H. Hiramatsu, M. Hirano, H. Hosono, Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP, Inorganic Chemistry 46 (2007) 7719-7721. https://doi.org/10.1021/ic701200e
[57] H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs, nature 453 (2008) 376-378. https://doi.org/10.1038/nature06972
[58] Y. Liu, H. Liang, Z. Xu, J. Xi, G. Chen, W. Gao, M. Xue, C. Gao, Superconducting continuous graphene fibers via calcium intercalation, ACS nano 11 (2017) 4301-4306. https://doi.org/10.1021/acsnano.7b01491
[59] P.B. Atienza, Superconductivity in Graphene and Carbon Nanotubes: Proximity effect and nonlocal transport, Springer Science & Business Media2013.
[60] J. Haruyama, Carbon-based Superconductors: Towards High-Tc Superconductivity, CRC Press2014. https://doi.org/10.1201/b15672
[61] N. Hannay, T. Geballe, B. Matthias, K. Andres, P. Schmidt, D. MacNair, Superconductivity in graphitic compounds, Physical Review Letters 14 (1965) 225. https://doi.org/10.1103/PhysRevLett.14.225
[62] M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite, Advances in physics 51 (2002) 1-186. https://doi.org/10.1080/00018730110113644
[63] E. Ekimov, V. Sidorov, E. Bauer, N. Mel’Nik, N. Curro, J. Thompson, S. Stishov, Superconductivity in diamond, nature 428 (2004) 542-545. https://doi.org/10.1038/nature02449
[64] A. Hebard, M. Rosseinky, R. Haddon, D. Murphy, S. Glarum, T. Palstra, A. Ramirez, A. Karton, Potassium-doped C60, Nature 350 (1991) 600-601. https://doi.org/10.1038/350600a0
[65] Z. Tang, L. Zhang, N. Wang, X. Zhang, G. Wen, G. Li, J. Wang, C.T. Chan, P. Sheng, Superconductivity in 4 angstrom single-walled carbon nanotubes, Science 292 (2001) 2462-2465. https://doi.org/10.1126/science.1060470
[66] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid state communications 146 (2008) 351-355. https://doi.org/10.1016/j.ssc.2008.02.024
[67] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano letters 8 (2008) 902-907. https://doi.org/10.1021/nl0731872
[68] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008) 1308-1308. https://doi.org/10.1126/science.1156965
[69] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, science 321 (2008) 385-388. https://doi.org/10.1126/science.1157996
[70] A.C. Ferrari, F. Bonaccorso, V. Fal’Ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H. Koppens, V. Palermo, N. Pugno, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7 (2015) 4598-4810. https://doi.org/10.1039/C4NR01600A
[71] A.P. Tiwari, S. Shin, E. Hwang, S.-G. Jung, T. Park, H. Lee, Superconductivity at 7.4 K in few layer graphene by Li-intercalation, Journal of Physics: Condensed Matter 29 (2017) 445701. https://doi.org/10.1088/1361-648X/aa88fb
[72] J. Linder, A.M. Black-Schaffer, T. Yokoyama, S. Doniach, A. Sudbø, Josephson current in graphene: Role of unconventional pairing symmetries, Physical Review B 80 (2009) 094522. https://doi.org/10.1103/PhysRevB.80.094522
[73] B. Uchoa, A.C. Neto, Superconducting states of pure and doped graphene, Physical review letters 98 (2007) 146801. https://doi.org/10.1103/PhysRevLett.98.146801
[74] H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M. Vandersypen, A.F. Morpurgo, Bipolar supercurrent in graphene, Nature 446 (2007) 56-59. https://doi.org/10.1038/nature05555
[75] F. Miao, S. Wijeratne, Y. Zhang, U. Coskun, W. Bao, C. Lau, Phase-coherent transport in graphene quantum billiards, science 317 (2007) 1530-1533. https://doi.org/10.1126/science.1144359
[76] G. Xu, B. Wu, J. Cao, Alternating current Josephson effect in superconductor-graphene-superconductor junctions, Journal of Applied Physics 109 (2011) 083704. https://doi.org/10.1063/1.3573501
[77] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity, Physical review 108 (1957) 1175. https://doi.org/10.1103/PhysRev.108.1175
[78] P. Canfield, D. Finnemore, S. Bud’Ko, J. Ostenson, G. Lapertot, C. Cunningham, C. Petrovic, Superconductivity in dense MgB 2 wires, Physical Review Letters 86 (2001) 2423. https://doi.org/10.1103/PhysRevLett.86.2423
[79] J. Kortus, I. Mazin, K.D. Belashchenko, V.P. Antropov, L. Boyer, Superconductivity of metallic boron in MgB 2, Physical Review Letters 86 (2001) 4656. https://doi.org/10.1103/PhysRevLett.86.4656
[80] Z.-A. Ren, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, Superconductivity in the iron-based F-doped layered quaternary compound Nd [O1− x Fx] FeAs, EPL (Europhysics Letters) 82 (2008) 57002. https://doi.org/10.1209/0295-5075/82/57002
[81] C. de La Cruz, Q. Huang, J. Lynn, J. Li, W.R. Ii, J.L. Zarestky, H. Mook, G. Chen, J. Luo, N. Wang, Magnetic order close to superconductivity in the iron-based layered lao1-xf x feas systems, nature 453 (2008) 899-902. https://doi.org/10.1038/nature07057
[82] L. Boeri, O. Dolgov, A.A. Golubov, Is LaFeAsO 1− x F x an electron-phonon superconductor?, Physical Review Letters 101 (2008) 026403. https://doi.org/10.1103/PhysRevLett.101.026403
[83] J.-Q. Yan, S. Nandi, J.L. Zarestky, W. Tian, A. Kreyssig, B. Jensen, A. Kracher, K.W. Dennis, R.J. McQueeney, A.I. Goldman, Flux growth at ambient pressure of millimeter-sized single crystals of LaFeAsO, LaFeAsO 1− x F x, and LaFe 1− x Co x AsO, Applied Physics Letters 95 (2009) 222504. https://doi.org/10.1063/1.3268435
[84] F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, Superconductivity in the PbO-type structure α-FeSe, Proceedings of the National Academy of Sciences 105 (2008) 14262-14264. https://doi.org/10.1073/pnas.0807325105
[85] S. Raghu, X.-L. Qi, C.-X. Liu, D. Scalapino, S.-C. Zhang, Minimal two-band model of the superconducting iron oxypnictides, Physical Review B 77 (2008) 220503. https://doi.org/10.1103/PhysRevB.77.220503
[86] C.C. Homes, A. Akrap, J. Wen, Z. Xu, Z.W. Lin, Q. Li, G. Gu, Optical properties of the iron-chalcogenide superconductor FeTe0. 55Se0. 45, Journal of Physics and Chemistry of Solids 72 (2011) 505-510. https://doi.org/10.1016/j.jpcs.2010.10.014
[87] B. Oswald, K. Best, M. Setzer, M. Söll, W. Gawalek, A. Gutt, L. Kovalev, G. Krabbes, L. Fisher, H. Freyhardt, Reluctance motors with bulk HTS material, Superconductor Science and Technology 18 (2004) S24. https://doi.org/10.1088/0953-2048/18/2/006
[88] F. Werfel, U. Floegel-Delor, R. Rothfeld, B. Goebel, D. Wippich, T. Riedel, Modelling and construction of a compact 500 kg HTS magnetic bearing, Superconductor Science and Technology 18 (2004) S19. https://doi.org/10.1088/0953-2048/18/2/005
[89] R.-P. Sawh, R. Weinstein, K. Carpenter, D. Parks, K. Davey, Production run of 2 cm diameter YBCO trapped field magnets with surface field of 2 T at 77 K, Superconductor Science and Technology 26 (2013) 105014. https://doi.org/10.1088/0953-2048/26/10/105014
[90] Y.-X. Guo, W.-M. Yang, J.-W. Li, L.-P. Guo, L.-P. Chen, Q. Li, Effects of vertical temperature gradient on the growth morphology and properties of single domain YBCO bulks fabricated by a new modified TSIG technique, Crystal Growth & Design 15 (2015) 1771-1775. https://doi.org/10.1021/cg501817z
[91] C.A. Bateman, L. Zhang, H.M. Chan, M.P. Harmer, Mechanism for the peritectic reaction and growth of aligned grains in YBa2Cu3O6+ x, Journal of the American Ceramic Society 75 (1992) 1281-1283. https://doi.org/10.1111/j.1151-2916.1992.tb05572.x
[92] P. Barua, V. Srinivas, S. Dhabal, T. Ghosh, X-ray photoelectron spectroscopic studies on nanoquasicrystalline powders of Al70Cu20Fe10 obtained by mechanical alloying, Journal of materials research 17 (2002) 1892-1895. https://doi.org/10.1557/JMR.2002.0280
[93] A. Endo, H. Chauhan, T. Egi, Y. Shiohara, Macrosegregation of Y {sub 2} Ba {sub 1} Cu {sub 1} O {sub 5} particles in Y {sub 1} Ba {sub 2} Cu {sub 3} O {sub 7 {minus}{delta}} crystals grown by an undercooling method, Journal of Materials Research 11 (1996). https://doi.org/10.1557/JMR.1996.0096
[94] B.N. Sun, P. Hartman, C. Woensdregt, H. Schmid, Structural morphology of YBa2Cu3O7-x, Journal of crystal growth 100 (1990) 605-614. https://doi.org/10.1016/0022-0248(90)90259-N
[95] W. Lo, D. Cardwell, J. Chow, Anisotropic growth morphology and platelet formation in large grain Y-Ba-Cu-O grown by seeded peritectic solidification, Journal of materials research 13 (1998) 1141-1146. https://doi.org/10.1557/JMR.1998.0162
[96] G.Z. Li, W.M. Yang, Y.L. Tang, J. Ma, Growth of single‐grain GdBa2Cu3O7‐x superconductors by top seeded infiltration and growth technique, Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 45 (2010) 219-225. https://doi.org/10.1002/crat.200900365
[97] Y. Nakamura, A. Endo, Y. Shiohara, The relation between the undercooling and the growth rate of YBa2Cu3O6+ x superconductive oxide, Journal of materials research 11 (1996) 1094-1100. https://doi.org/10.1557/JMR.1996.0139
[98] M. Radusovska, P. Diko, S. Piovarci, S. Park, B. Jun, C. Kim, Microstructure and trapped field of YBCO bulk single-grain superconductors prepared by interior seeding, Superconductor Science and Technology 30 (2017) 105013. https://doi.org/10.1088/1361-6668/aa8648
[99] T.-T. Wu, H.-Y. Zhang, W.-M. Yang, Y.-L. Cui, A. Abulaiti, Effect of seed orientations on the crystallization characteristics and the magnetic levitation properties of single domain YBCO bulk superconductors, Journal of Alloys and Compounds 883 (2021) 160788. https://doi.org/10.1016/j.jallcom.2021.160788
[100] W. Yang, X. Guo, F. Wan, G. Li, Real-time observation and analysis of single-domain YBCO bulk superconductor by TSIG process, Crystal growth & design 11 (2011) 3056-3059. https://doi.org/10.1021/cg2003222
[101] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B 37 (1988) 785. https://doi.org/10.1103/PhysRevB.37.785
[102] T. Masuda, T. Kato, H. Yumura, M. Watanabe, Y. Ashibe, K. Ohkura, C. Suzawa, M. Hirose, S. Isojima, K. Matsuo, Verification tests of a 66 kV HTSC cable system for practical use (first cooling tests), Physica C: Superconductivity 378 (2002) 1174-1180. https://doi.org/10.1016/S0921-4534(02)01750-1
[103] T. Kurusu, M. Ono, S. Hanai, M. Kyoto, H. Takigami, H. Takano, K. Watanabe, S. Awaji, K. Koyama, G. Nishijima, A cryocooler-cooled 19 T superconducting magnet with 52 mm room temperature bore, IEEE transactions on applied superconductivity 14 (2004) 393-396. https://doi.org/10.1109/TASC.2004.829679
[104] M. Cheng, B. Yan, K. Lee, Q. Ma, E. Yang, A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system, Superconductor Science and Technology 18 (2005) 1100. https://doi.org/10.1088/0953-2048/18/8/013
[105] K. Suzuki, J. Baba, T. Nitta, Conceptual design of an SFCL by use of BSCCO wire, Journal of Physics: Conference Series, IOP Publishing, 2008, pp. 012293. https://doi.org/10.1088/1742-6596/97/1/012293
[106] B. Albiss, Thick films of superconducting YBCO as magnetic sensors, Superconductor Science and Technology 18 (2005) 1222. https://doi.org/10.1088/0953-2048/18/9/014
[107] R. Aloysius, P. Guruswamy, U. Syamaprasad, Enhanced critical current density in (Bi, Pb)-2223 superconductor by Nd addition in low percentages, Physica C: Superconductivity 426 (2005) 556-562. https://doi.org/10.1016/j.physc.2005.05.017
[108] C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Structural and physical properties of Sm-doped Bi1. 6Pb0. 4Sr2Ca2− xSmxCu3Oy superconductors, Physica C: Superconductivity and its applications 423 (2005) 119-126. https://doi.org/10.1016/j.physc.2005.04.008
[109] J. Ekin, A.I. Braginski, A. Panson, M. Janocko, D. Capone, N. Zaluzec, B. Flandermeyer, O. De Lima, M. Hong, J. Kwo, Evidence for weak link and anisotropy limitations on the transport critical current in bulk polycrystalline Y1Ba2Cu3O x, Journal of applied physics 62 (1987) 4821-4828. https://doi.org/10.1063/1.338985
[110] S. Sinha, S. Gadkari, S. Sabharwal, L. Gupta, M. Gupta, Bulk synthesis of (BiPb) 2Sr2Ca2Cu3Ox superconductor, Physica C: Superconductivity 185 (1991) 499-500. https://doi.org/10.1016/0921-4534(91)92052-D
[111] A. Mamalis, S. Ovchinnikov, M. Petrov, D. Balaev, K. Shaihutdinov, D. Gohfeld, S. Kharlamova, I. Vottea, Composite materials on high-Tc superconductors and BaPbO3, Ag basis, Physica C: Superconductivity and its applications 364 (2001) 174-177. https://doi.org/10.1016/S0921-4534(01)00749-3
[112] X. Cai, A. Gurevich, D. Larbalestier, R. Kelley, M. Onellion, H. Berger, G. Margaritondo, Static and dynamic mechanisms of the anomalous field dependence of magnetization in Bi-Sr-Ca-Cu-O and Bi-Pb-Sr-Ca-Cu-O single crystals, Physical Review B 50 (1994) 16774. https://doi.org/10.1103/PhysRevB.50.16774
[113] M. Shalaby, M.H. Hamed, N. Yousif, H. Hashem, The impact of the addition of Bi2Te3 nanoparticles on the structural and the magnetic properties of the Bi-2223 high-Tc superconductor, Ceramics international 47 (2021) 25236-25248. https://doi.org/10.1016/j.ceramint.2021.05.244
[114] Z. Jia, H. Tang, Z. Yang, Y. Xing, Y. Wang, G. Qiao, Effects of nano-ZrO2 particles on the superconductivity of Pb-doped BSCCO, Physica C: Superconductivity 337 (2000) 130-132. https://doi.org/10.1016/S0921-4534(00)00072-1
[115] E. Guilmeau, B. Andrzejewski, J. Noudem, The effect of MgO addition on the formation and the superconducting properties of the Bi2223 phase, Physica C: Superconductivity 387 (2003) 382-390. https://doi.org/10.1016/S0921-4534(02)02360-2
[116] A. Ghattas, M. Zouaoui, M. Annabi, A. Madani, F.B. Azzouz, M.B. Salem, Enhancement of superconductivity properties in nano ZrO2 particles added Bi1. 8Pb0. 4Sr2Ca2Cu3Ox ceramics, Journal of Physics: Conference Series, IOP Publishing, 2008, pp. 012179. https://doi.org/10.1088/1742-6596/97/1/012179
[117] H. Baqiah, S. Halim, M. Adam, S. Chen, S. Ravandi, M. Faisal, M. Kamarulzaman, M. Hanif, The Effect of Magnetic Nanoparticle Addition on the Superconducting Properties Bi1. 6Pb0. 4Sr2Ca2Cu3Oδ Superconductors, Solid State Science and Technology 17 (2009) 81-88.
[118] S. Zhang, X. Ma, B. Shao, L. Cui, G. Liu, H. Zheng, X. Liu, J. Feng, C. Li, P. Zhang, Fabrication of multifilamentary powder in tube superconducting tapes of Bi-2223 with Sr deficient starting composition, Cryogenics 114 (2021) 103245. https://doi.org/10.1016/j.cryogenics.2020.103245
[119] Y. Guo, Y. Tanaka, T. Kuroda, S. Dou, Z. Yang, Addition of nanometer SiC in the silver-sheathed Bi2223 superconducting tapes, Physica C: Superconductivity 311 (1999) 65-74. https://doi.org/10.1016/S0921-4534(98)00625-X
[120] W. Wei, J. Schwartz, K. Goretta, U. Balachandran, A. Bhargava, Effects of nanosize MgO additions to bulk Bi2. 1Sr1. 7CaCu2Ox, Physica C: Superconductivity 298 (1998) 279-288. https://doi.org/10.1016/S0921-4534(97)01889-3
[121] K. Wei, R. Abd-Shukor, Superconducting and transport properties of (Bi-Pb)-Sr-Ca-Cu-O with nano-Cr2O3 additions, Journal of Electronic Materials 36 (2007) 1648-1651. https://doi.org/10.1007/s11664-007-0287-1
[122] M. Annabi, A. M’chirgui, F.B. Azzouz, M. Zouaoui, M.B. Salem, Addition of nanometer Al2O3 during the final processing of (Bi, Pb)-2223 superconductors, Physica C: Superconductivity 405 (2004) 25-33. https://doi.org/10.1016/j.physc.2004.01.012
[123] H. Sözeri, N. Ghazanfari, H. Özkan, A. Kilic, Enhancement in the high-Tc phase of BSCCO superconductors by Nb addition, Superconductor Science and Technology 20 (2007) 522. https://doi.org/10.1088/0953-2048/20/6/007
[124] K. Habanjar, F.E.H. Hassan, R. Awad, Physical and dielectric properties of (Bi, Pb)-2223 superconducting samples added with BaFe12O19 nanoparticles, Chemical Physics Letters 757 (2020) 137880. https://doi.org/10.1016/j.cplett.2020.137880
[125] M. Masnita, R. Abd-Shukor, Iron sulfide effects on AC susceptibility and electrical properties of Bi1. 6Pb0. 4Sr2CaCu2O8 superconductor, Results in Physics 17 (2020) 103177. https://doi.org/10.1016/j.rinp.2020.103177
[126] D. Brochier, P. Cardinne, M. Renard, Inclusions ferromagnétiques dans des supraconducteurs de deuxième espèce, Journal de Physique 29 (1968) 953-956. https://doi.org/10.1051/jphys:019680029010095300
[127] P. Togulev, V. Bazarov, I. Khaı̆bullin, N. Suleı̆manov, Reinforcement of pinning by surface magnetic microparticles in high-Tc superconductors, Low Temperature Physics 28 (2002) 250-253. https://doi.org/10.1063/1.1477357