Superconductors for Medical Applications

$30.00

Superconductors for Medical Applications

S.S. Ali and M. Zulqarnain

Superconductivity plays a vital role in advanced medical diagnostic as well as in treatment of cancer. Smaller sized superconducting cyclotrons are developing as efficient techniques with carbon ions and protons for external beam therapy. This equipment further gives benefits of less cost and due to smaller size it is far easier to handle. Nowadays, superconductivity has been used commercially in numerous applications in medical sciences including low-temperature superconducting (LTS) materials and high field magnets in magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), magnetic gene transfer, magnetic drug delivery system and cancer and internal hemorrhages detection. Almost all commercial medical systems based on superconductivity use LTS and the majority uses NbTi wires or superconducting quantum interference device (SQUID) made of LTS material.

Keywords
Magnetic Resonance Imaging (MRI), MRI based Food Inspection, Magnetic Gene Transfer, Magnetic Drug Delivery System (MDDS), Internal Hemorrhages Detection

Published online 10/5/2022, 19 pages

Citation: S.S. Ali and M. Zulqarnain, Superconductors for Medical Applications, Materials Research Foundations, Vol. 132, pp 211-229, 2022

DOI: https://doi.org/10.21741/9781644902110-12

Part of the book on Superconductors

References
[1] P. F. Dahl, Superconductivity: its historical roots and development from mercury to the ceramic oxides, American Institute of Physics, New York,
1992, pp 261-264.
[2] From data compiled by the U.S. Centers for Medicare & Medicaid Services. 7500 Security Boulevard, Baltimore, MD 21244, USA.
[3] M. O’Donnell, Magnetic nanoparticles as contrast agents for molecular imaging in medicine, Phys. C: Supercond. Appl. 548 (2018) 103-106. https://doi.org/10.1016/j.physc.2018.02.031
[4] A. Bergen, R. Andersen, M. Bauer, H. Boy, M. Ter Brake, P. Brutsaert, C. Buhrer, M. Dhalle, J. Hansen, H. Ten Kate and J. Kellers, Design and in-field testing of the world’s first ReBCO rotor for a 3.6 MW wind generator, Supercond. Sci. Technol. 32 (2019) 125006. https://doi.org/10.1088/1361-6668/ab48d6
[5] M. Parizh, Y. Lvovsky and M. Sumption, Conductors for commercial MRI magnets beyond NbTi: requirements and challenges, Supercond. Sci. Technol. 30 (2017) 014007 https://doi.org/10.1088/0953-2048/30/1/014007
[6] Z. Wang, J. M. van Oort, and M. X. Zou, Development of superconducting magnet for high-field MR systems in China. Phys. C: Supercond. Appl. 482 (2012) 80-86. https://doi.org/10.1016/j.physc.2012.04.027
[7] T. C. Cosmus, and M. Parizh, Advances in whole-body MRI magnets, IEEE Trans. Appl.Supercond. 21 (2010) 2104-2109. https://doi.org/10.1109/TASC.2010.2084981
[8] S. Chen, Y. Li, Y. Dai, Y. Lei and L. Yan, Quench protection design of a 9.4 T whole-body MRI superconducting magnet, Phys. C: Supercond. Appl. 497 (2014) 49-53 https://doi.org/10.1016/j.physc.2013.11.001
[9] Y. Dai, Q. Wang, C. Wang, L. Li, H. Wang, Z. Ni, S. Song, S. Chen, B. Zhao, H. Wang and Y. Li, Structural design of a 9.4 T whole-body MRI superconducting magnet, IEEE Trans. Appl. Supercond. 22 (2012) 4900404. https://doi.org/10.1109/TASC.2012.2184509
[10] Q. Wang, High field superconducting magnet: Science technology and applications, Prog. Phys. 33 (2013) 1-23.
[11] Q. Wang, Y. Dai, B. Zhao, S. Song, C. Wang, L. Li, J. Cheng, S. Chen, H. Wang, Z. Ni and Y. Li, A superconducting magnet system for whole-body metabolism imaging, IEEE Trans. Appl. Supercond. 22 (2011) 4900905. https://doi.org/10.1109/TASC.2011.2175888
[12] B. M. Dale, M. A. Brown, R. C. Semelka, MRI: Basic Principles and Applications, Wiley-Blackwell/John Wiley & Sons, Hoboken, N. J. 2010.
[13] R. H. Hashemi, W. G. Bradley and C. J. Lisanti, MRI: the basics: The Basics. Lippincott Williams & Wilkins, Philadelphia, 2012.
[14] J. F. Schenck, F. A. Jolesz, P. B. Roemer, H. E. Cline, W. E. Lorensen, R. Kikinis, S. G. Silverman, C. J. Hardy, W. D. Barber, E. T. Laskaris and B. Dorri, Superconducting open-configuration MR imaging system for image-guided therapy, Radiology 195 (1995) 805-814. https://doi.org/10.1148/radiology.195.3.7754014
[15] T. Tadic and B. G. Fallone, Design and optimization of superconducting MRI magnet systems with magnetic materials. IEEE Trans. Appl. Supercond. 22 (2012) 4400107. https://doi.org/10.1109/TASC.2012.2183871
[16] Y. Lvovsky, E. W. Stautner and T. Zhang, Novel technologies and configurations of superconducting magnets for MRI, Supercond. Sci. Technol. 26 (2013) 093001. https://doi.org/10.1088/0953-2048/26/9/093001
[17] S. Kakugawa, N. Hino, A. Komura, M. Kitamura, H. Takeshima, T. Yatsuo and H. Tazaki, Three-dimensional optimization of correction iron pieces for open high field MRI system, IEEE Trans. Appl. Supercond. 14 (2004) 1624-1627. https://doi.org/10.1109/TASC.2004.831019
[18] M. Dewey, T. Schink and C. F. Dewey, Claustrophobia during magnetic resonance imaging: cohort study in over 55,000 patients. J. Magn. Reson. Imaging 26 (2007) 1322-1327. https://doi.org/10.1002/jmri.21147
[19] Y. Wang, Q. Wang, L. Wang, H. Qu, Y. Liu and F. Liu, Electromagnetic design of a 1.5 T open MRI superconducting magnet, Phys. C: Supercond. Appl. 570 (2020) 1353602. https://doi.org/10.1016/j.physc.2020.1353602
[20] Z. Ni, Q. Wang, F. Liu, L. Yan, A homogeneous superconducting magnet design using a hybrid optimization algorithm, Meas. Sci. Technol. 24 (2013) 125402. https://doi.org/10.1088/0957-0233/24/12/125402
[21] Z. Ni, G. Hu, L. Li, G. Yu, Q. Wang, L. Yan, Globally optimal algorithm for design of 0.7 T actively shielded whole-body open mri superconducting magnet system, IEEE Trans. Appl. Supercond. 23 (2013) 4401104. https://doi.org/10.1109/TASC.2012.2231720
[22] Q. M. Tieng, V. Vegh, I. M. Brereton, Globally optimal superconducting magnets part II: symmetric MSE coil arrangement, J. Magn. Reson. 196 (2009) 7-11. https://doi.org/10.1016/j.jmr.2008.09.023
[23] Q. M. Tieng, V. Vegh, I. M. Brereton, Globally optimal superconducting magnets part I: Minimum stored energy (MSE) current density map, J. Magn. Reson. 196 (2009) 1-6. https://doi.org/10.1016/j.jmr.2008.09.018
[24] Z. Ni, G. Hu, Q. Wang, L. Yan, Globally optimal superconducting homogeneous magnet design for an asymmetric 3.0 T head MRI scanner, IEEE Trans. Appl. Supercond. 24 (2013) 1-5. https://doi.org/10.1109/TASC.2013.2283653
[25] X. Hao, S. M. Conolly, G. C. Scott, A. Macovski, Homogeneous magnet design using linear programming, IEEE Trans. Magn. 36 (2000) 476-483. https://doi.org/10.1109/20.825817
[26] Z. Ni, Q. Wang, F. Liu, L. Yan, A homogeneous superconducting magnet design using a hybrid optimization algorithm, Meas. Sci. Technol. 24 (2013) 125402. https://doi.org/10.1088/0957-0233/24/12/125402
[27] A. Borceto, D. Damiani, A. Viale, F. Bertora, R. Marabotto, Engineering design of a special purpose functional magnetic resonance scanner magnet, IEEE Trans. Appl. Supercond. 23 (2012) 4400205. https://doi.org/10.1109/TASC.2012.2234811
[28] R. McDermott, A.H. Trabesinger, M. Muck, E.L. Hahn, A. Pines and J. Clarke, Liquid state NMR and scalar coupling in microtesla magnetic fields, Science 295 (2002) 2247-2249. https://doi.org/10.1126/science.1069280
[29] R. McDermott, N. Kelso, S.-K. Lee, M. Moble, M. Muck, W. Myers, B. T. Haken, H. C. Seton, A. H. Trabesinger, A. Pines, J. Clarke, SQUID-detected magnetic resonance imaging in microtesla magnetic fields, J. Low Temp. Phys. 135 (2004) 793. https://doi.org/10.1023/B:JOLT.0000029519.09286.c5
[30] A. N. Matlachov, P. L. Volegov, M. A. Espy, J. S. George and R. H. Kraus Jr, SQUID detected NMR in microtesla magnetic fields, J. Magn. Reson. 170 (2004) 1-7. https://doi.org/10.1016/j.jmr.2004.05.015
[31] P. Volegov, A. N. Matlachov, M. A. Espy, J. S. George and R. H. Kraus Jr., Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields, Magn. Reson.Med.52 (2004) 467-470. https://doi.org/10.1002/mrm.20193
[32] L. Q. Qiu, Y. Zhang, H. J. Krause, A. I. Braginski, A. Offenhäusser, J. Magn. Reson. 196 (2009) 101-104 https://doi.org/10.1016/j.jmr.2008.09.009
[33] L. Qiu, Y. Zhang, H. J. Krause, A. I. Braginski and A. Offenhausser, Low-field NMR measurement procedure when SQUID detection is used, J. Magn. Reson.196 (2009) 101-104. https://doi.org/10.1016/j.jmr.2008.09.009
[34] S. Y. Yang, K. W. Lin, J. J. Chieh, C. C. Yang, H. E. Horng, S. H. Liao, H. H. Chen, C. Y.Hong and H.C. Yang, Step-Edge High-Tc SQUID Magnetometer for Low-Field NMR Detection, IEEE Trans. Appl. Supercond. 21 (2011) 534-537. https://doi.org/10.1109/TASC.2011.2104353
[35] S. Fukumoto, M. Hayashi, Y. Katsu, M. Suzuki, R. Morita, Y. Naganuma, Y.
Hatsukade, S. Tanaka, O. Snigirev, Liquid-State Nuclear Magnetic Resonance Measurements for Imaging Using HTS-rf-SQUID in Ultra-Low Field, IEEE Trans. Appl. Supercond. 21 (2011) 522 https://doi.org/10.1109/TASC.2011.2106474
[36] Y. Hatsukade, S. Tsunaki, M. Yamamoto, T. Abe, J. Hatta and S. Tanaka, Feasibility study of contaminant detection for food with ULF-NMR/MRI system using HTS-SQUID”, Phys. C: Supercond. 494 (2013) 199-202. https://doi.org/10.1016/j.physc.2013.04.004
[37] K. Nakagawa, Y. Ohaku, J. Tamada, F. Mishima, Y. Akiyama, M. Kiomy Osako, H. Nakagami and S. Nishijima, Study on magnetic gene transfer using HTS bulk magnet, Phys. C: Supercond. 494 (2013) 262-264 https://doi.org/10.1016/j.physc.2013.04.072
[38] J. P. Fortin-Ripoche, M. S. Martina, F. Gazeau, C. Menager, C. Wilhelm, J. C. Bacri, S. Lesieur and O. Clement, Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility, Radiology 239 (2006) 415-424 https://doi.org/10.1148/radiol.2392042110
[39] S. Takeda, F. Mishima, B. Terazono, Y. Izumi, S. Nishijima, Development of Magnetic Force-Assisted New Gene Transfer System Using Biopolymer-Coated Ferromagnetic Nanoparticles, IEEE Trans. Appl. Supercond. 16 (2006) 1543. https://doi.org/10.1109/TASC.2005.869695
[40] F. Mishima, S. Fujimoto, S. Takeda, Y. Izumi, S. Nishijima, Development of control system for magnetically targeted drug delivery, J. Magn. Magn. Mater. 310 (2007) 2883. https://doi.org/10.1016/j.jmmm.2006.11.124
[41] F. Mishima, S. I. Takeda, Y. Izumi and S. Nishijima, Development of magnetic field control for magnetically targeted drug delivery system using a superconducting magnet, IEEE Trans. Appl. Supercond. 17 (2007) 2303-2306. https://doi.org/10.1109/TASC.2007.898413
[42] S. Nishijima, F. Mishima, T. Terada and S. Takeda, A study on magnetically targeted drug delivery system using superconducting magnet, Phys. C: Supercond. Appl. 463 (2007) 1311-1314. https://doi.org/10.1016/j.physc.2007.03.493
[43] Y. Yoshida, S. Fukui, S. Fujimoto, F. Mishima, S. Takeda, Y. Izumi, S. Ohtani, Y. Fujitani and S. Nishijima, Ex vivo investigation of magnetically targeted drug delivery system, J. Magn. Magn. Mater. 310 (2007) 2880-2882. https://doi.org/10.1016/j.jmmm.2006.11.123
[44] F. Mishima, S. Fujimoto, S. Takeda, Y. Izumi and S. Nishijima, Development of control system for magnetically targeted drug delivery, J. Magn. Magn. Mater. 310 (2007) 2883-2885. https://doi.org/10.1016/j.jmmm.2006.11.124
[45] T. Terada, S. Fukui, F. Mishima, Y. Akiyama, Y. Izumi and S. Nishijima, Development of magnetic drug delivery system using HTS bulk magnet, Phys. C: Supercond. 468 (2008) 2133-2136. https://doi.org/10.1016/j.physc.2008.05.145
[46] M. Chuzawa, F. Mishima, Y. Akiyama, S. Nishijima, Drug accumulation by means of noninvasive magnetic drug delivery system, Phys. C: Supercond. Appl. 471 (2011) 1538-1542. https://doi.org/10.1016/j.physc.2011.05.233
[47] M. Chuzawa, F. Mishima, Y. Akiyama and S. Nishijima, Precise control of the drug kinetics by means of non-invasive magnetic drug delivery system, Phys. C: Supercond. 484 (2013) 120-124. https://doi.org/10.1016/j.physc.2012.03.070
[48] P. Grasland-Mongrain, J. M. Mari, J. Y. Chapelon and C. Lafon, Lorentz force electrical impedance tomography, Irbm 34 (2013) 357-360. https://doi.org/10.1016/j.irbm.2013.08.002
[49] Y. Xu and B. He, Magnetoacoustic tomography with magnetic induction (MAT-MI), Phys. Med. Biol. 50 (2005) 5175. https://doi.org/10.1088/0031-9155/50/21/015
[50] H. Wen, J. Shah and R.S. Balaban, Hall effect imaging, IEEE Trans. Biomed. Eng. 45 (1998) 119-124. https://doi.org/10.1109/10.650364
[51] C. Gabriel, S. Gabriel and Y. E. Corthout, The dielectric properties of biological tissues: Literature survey, Phys. Med. Biol. 41 (1996) 2231. https://doi.org/10.1088/0031-9155/41/11/001
[52] H. P. Schwan and K. R. Foster, RF-field interactions with biological systems: electrical properties and biophysical mechanisms, Proc. IEEE 68 (1980) 104-113. https://doi.org/10.1109/PROC.1980.11589
[53] B. Shen, L. Fu, J. Geng, X. Zhang, H. Zhang, Q. Dong, C. Li, J. Li and T. A. Coombs, Design and simulation of superconducting lorentz force electrical Impedance tomography (LFEIT), Phys. C: Supercond. Appl. 524 (2016) 5-12. https://doi.org/10.1016/j.physc.2016.02.023