Piezoelectric Materials for Sensor Applications


Piezoelectric Materials for Sensor Applications

Dnyandeo Pawar, Rajesh Kanawade, Dattatray Late, DeLiang Zhu, PeiJiang Cao

Today, the piezoelectric materials are the state-of-art materials due to their mesmerizing property of tuning mechanical strain or vibrational energy into an electrical energy and vice versa, and therefore, it is considered very promising for future technological applications. In this chapter, the details including fundamental mechanism of piezoelectricity, fabrication methods, newly designed piezoelectric materials, and their applications in various fields are deeply reviewed. The conclusion and the future outlook are discussed.

Piezoelectricity, Energy-Harvesting, Nanogenerator, Piezoelectric-Coefficient, Electro-Mechanical Coupling

Published online 2022/09/01, 22 pages

Citation: Dnyandeo Pawar, Rajesh Kanawade, Dattatray Late, DeLiang Zhu, PeiJiang Cao, Piezoelectric Materials for Sensor Applications, Materials Research Foundations, Vol. 131, pp 259-280, 2022

DOI: https://doi.org/10.21741/9781644902097-9

Part of the book on Advanced Functional Piezoelectric Materials and Applications

[1] H. Wang, J. Qian, F. Ding, Emerging Chitosan-Based Films for Food Packaging Applications, J. Agric. Food Chem. 66 (2018) 395–413. https://doi.org/10.1021/acs.jafc.7b04528
[2] D. Pawar, B.V.B. Rao, S.N. Kale, Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry–Perot interferometer, Analyst. 143 (2018) 1890–1898. https://doi.org/10.1039/C7AN01891F
[3] R. Kitture, D. Pawar, C.N. Rao, R.K. Choubey, S.N. Kale, Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA, J. Alloys Compd. 695 (2017) 2091–2096. https://doi.org/https://doi.org/10.1016/j.jallcom.2016.11.048
[4] D. Pawar, R. Kanawade, A. Kumar, C.N. Rao, P. Cao, S. Gaware, D. Late, S.N. Kale, S.T. Navale, W.J. Liu, D.L. Zhu, Y.M. Lu, R.K. Sinha, High-performance dual cavity-interferometric volatile gas sensor utilizing Graphene/PMMA nanocomposite, Sensors Actuators B Chem. 312 (2020) 127921. https://doi.org/https://doi.org/10.1016/j.snb.2020.127921
[5] R. Kanawade, A. Kumar, D. Pawar, K. Vairagi, D. Late, S. Sarkar, R.K. Sinha, S. Mondal, Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing, Opt. Express. 27 (2019) 7277–7290. https://doi.org/10.1364/OE.27.007277
[6] A. Kumar, D. Pawar, K. Vairagi, S. Mondal, R. Kanawade, Polyvinyl alcohol filled negative axicon tip based highly sensitive fiber optic sensor for acetone sensing, Mater. Today Proc. 28 (2020) 1816–1819. https://doi.org/https://doi.org/10.1016/j.matpr.2020.05.220
[7] S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry, S.R. Marder, Surface-Initiated Polymerization from Barium Titanate Nanoparticles for Hybrid Dielectric Capacitors, ACS Appl. Mater. Interfaces. 6 (2014) 3477–3482. https://doi.org/10.1021/am4056276
[8] C.N. Rao, D. Pawar, U.T. Nakate, R. Aepuru, X. Gui, R. V Mangalaraja, S.N. Kale, E. Suh, W. Liu, D. Zhu, Y. Lu, P. Cao, Electric field controlled near-infrared high-speed electro-optic switching modulator integrated with 2D MgO, Opt. Lett. 45 (2020) 4611–4614. https://doi.org/10.1364/OL.393796
[9] S. Dutta, E.A. Goldschmidt, S. Barik, U. Saha, E. Waks, Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate, Nano Lett. 20 (2020) 741–747. https://doi.org/10.1021/acs.nanolett.9b04679
[10] Q. Su, M. Fang, D. Zhu, W. Xu, S. Han, M. Fang, W. Liu, P. Cao, Y. Lu, D. Pawar, Ultrahigh-responsivity deep-UV photodetector based on heterogeneously integrated AZO/a-Ga2O3 vertical structure, J. Alloys Compd. 889 (2021) 161599. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.161599
[11] N. Karim, S. Afroj, K. Lloyd, L.C. Oaten, D. V Andreeva, C. Carr, A.D. Farmery, I.-D. Kim, K.S. Novoselov, Sustainable Personal Protective Clothing for Healthcare Applications: A Review, ACS Nano. 14 (2020) 12313–12340. https://doi.org/10.1021/acsnano.0c05537
[12] S. Karagoz, N.B. Kiremitler, G. Sarp, S. Pekdemir, S. Salem, A.G. Goksu, M.S. Onses, I. Sozdutmaz, E. Sahmetlioglu, E.S. Ozkara, A. Ceylan, E. Yilmaz, Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications, ACS Appl. Mater. Interfaces. 13 (2021) 5678–5690. https://doi.org/10.1021/acsami.0c15606
[13] Y.-H. Zhang, H.-H. Ren, L.-P. Yu, Development of molecularly imprinted photonic polymers for sensing of sulfonamides in egg white, Anal. Methods. 10 (2018) 101–108. https://doi.org/10.1039/C7AY02283B
[14] B. Zhang, B. Li, Z. Wang, Creation of Carbazole-Based Fluorescent Porous Polymers for Recognition and Detection of Various Pesticides in Water, ACS Sensors. 5 (2020) 162–170. https://doi.org/10.1021/acssensors.9b01954
[15] D. Pawar, A. Kumar, R. Kanawade, S. Mondal, R.K. Sinha, Negative axicon tip micro-cavity with a polymer incorporated optical fiber temperature sensor, OSA Contin. 2 (2019) 2353–2361. https://doi.org/10.1364/OSAC.2.002353
[16] M.M. Alam, S.K. Ghosh, A. Sultana, D. Mandal, An Effective Wind Energy Harvester of Paper Ash-Mediated Rapidly Synthesized ZnO Nanoparticle-Interfaced Electrospun PVDF Fiber, ACS Sustain. Chem. Eng. 6 (2018) 292–299. https://doi.org/10.1021/acssuschemeng.7b02441
[17] Z. Wang, H. Cui, S. Li, X. Feng, J. Aghassi-Hagmann, S. Azizian, P.A. Levkin, Facile Approach to Conductive Polymer Microelectrodes for Flexible Electronics, ACS Appl. Mater. Interfaces. 13 (2021) 21661–21668. https://doi.org/10.1021/acsami.0c22519
[18] N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy. 80 (2021) 105567. https://doi.org/https://doi.org/10.1016/j.nanoen.2020.105567
[19] H. Zhou, Y. Zhang, Y. Qiu, H. Wu, W. Qin, Y. Liao, Q. Yu, H. Cheng, Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices, Biosens. Bioelectron. 168 (2020) 112569. https://doi.org/https://doi.org/10.1016/j.bios.2020.112569
[20] S. Das Mahapatra, P.C. Mohapatra, A.I. Aria, G. Christie, Y.K. Mishra, S. Hofmann, V.K. Thakur, Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials, Adv. Sci. (2021) 2100864. https://doi.org/https://doi.org/10.1002/advs.202100864
[21] A.M. Roji M, J. G, A.B. Raj T, A retrospect on the role of piezoelectric nanogenerators in the development of the green world, RSC Adv. 7 (2017) 33642–33670. https://doi.org/10.1039/C7RA05256A
[22] C. Wan, C.R. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure, J. Mater. Chem. A. 5 (2017) 3091–3128. https://doi.org/10.1039/C6TA09590A
[23] H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma, N. Wang, Z. Wang, Y. Sun, R. Wei, Z. Guo, An overview of lead-free piezoelectric materials and devices, J. Mater. Chem. C. 6 (2018) 12446–12467. https://doi.org/10.1039/C8TC04515A
[24] Z. Yang, S. Zhou, J. Zu, D. Inman, High-Performance Piezoelectric Energy Harvesters and Their Applications, Joule. 2 (2018) 642–697. https://doi.org/https://doi.org/10.1016/j.joule.2018.03.011
[25] A.U.U. Olayinka Oluwatosin Abegunde, Esther Titilayo Akinlabi, Oluseyi Philip Oladijo, Stephen Akinlabi, Overview of thin film deposition techniques, AIMS Mater. Sci. 6 (2019) 174–199. https://doi.org/10.3934/matersci.2019.2.174
[26] X. He, Q. Wen, Z. Lu, Z. Shang, Z. Wen, A micro-electromechanical systems based vibration energy harvester with aluminum nitride piezoelectric thin film deposited by pulsed direct-current magnetron sputtering, Appl. Energy. 228 (2018) 881–890. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.07.001
[27] M. Akhtari Zavareh, B. Abd Razak, M.H. Bin Wahab, B.T. Goh, R. Mahmoodian, K. Wasa, Fabrication of Pb(Zr,Ti)O3 thin films utilizing unconventional powder magnetron sputtering (PMS), Ceram. Int. 46 (2020) 1281–1296. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.09.013
[28] A. Schatz, D. Pantel, T. Hanemann, Towards low-temperature deposition of piezoelectric Pb(Zr,Ti)O3: Influence of pressure and temperature on the properties of pulsed laser deposited Pb(Zr,Ti)O3, Thin Solid Films. 636 (2017) 680–687. https://doi.org/https://doi.org/10.1016/j.tsf.2017.06.045
[29] S. Jiao, Y. Zhang, Z. Duan, T. Wang, Y. Tang, X. Zhao, D. Sun, W. Shi, F. Wang, Influence of oxygen pressure on the electrical properties of Mn-doped Bi0.5Na0.5TiO3BaTiO3 thin films by pulsed laser deposition, Ceram. Int. 45 (2019) 13518–13522. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.04.056
[30] Z. Zhang, Y. Long, L. Nie, S. Yao, Molecularly imprinted thin film self-assembled on piezoelectric quartz crystal surface by the sol–gel process for protein recognition, Biosens. Bioelectron. 21 (2006) 1244–1251. https://doi.org/https://doi.org/10.1016/j.bios.2005.05.009
[31] C.-C. Tsai, S.-Y. Chu, C.-S. Hong, Y.-C. Chien, C.-C. Lin, Effects of annealing temperature and pressure of vacuum infiltration on the electrical properties of Pb(Zr0.52Ti0.48)O3 thick films prepared via a modified sol–gel method, Thin Solid Films. 706 (2020) 138071. https://doi.org/https://doi.org/10.1016/j.tsf.2020.138071
[32] M. Zhang, T. Gao, J. Wang, J. Liao, Y. Qiu, Q. Yang, H. Xue, Z. Shi, Y. Zhao, Z. Xiong, L. Chen, A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application, Nano Energy. 13 (2015) 298–305. https://doi.org/https://doi.org/10.1016/j.nanoen.2015.02.034
[33] S. Bai, L. Zhang, Q. Xu, Y. Zheng, Y. Qin, Z.L. Wang, Two dimensional woven nanogenerator, Nano Energy. 2 (2013) 749–753. https://doi.org/https://doi.org/10.1016/j.nanoen.2013.01.001
[34] W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, T. Jing, Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices, ACS Nano. 6 (2012) 6231–6235. https://doi.org/10.1021/nn3016585
[35] Y. Ahn, S. Song, K.-S. Yun, Woven flexible textile structure for wearable power-generating tactile sensor array, Smart Mater. Struct. 24 (2015) 75002. https://doi.org/10.1088/0964-1726/24/7/075002
[36] S. Lee, S.-H. Bae, L. Lin, Y. Yang, C. Park, S.-W. Kim, S.N. Cha, H. Kim, Y.J. Park, Z.L. Wang, Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor, Adv. Funct. Mater. 23 (2013) 2445–2449. https://doi.org/https://doi.org/10.1002/adfm.201202867
[37] Z. He, B. Gao, T. Li, J. Liao, B. Liu, X. Liu, C. Wang, Z. Feng, Z. Gu, Piezoelectric-Driven Self-Powered Patterned Electrochromic Supercapacitor for Human Motion Energy Harvesting, ACS Sustain. Chem. Eng. 7 (2019) 1745–1752. https://doi.org/10.1021/acssuschemeng.8b05606
[38] K. Shi, B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators, Nano Energy. 52 (2018) 153–162. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.07.053
[39] C. Dagdeviren, B.D. Yang, Y. Su, P.L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, B. Lu, R. Poston, Z. Khalpey, R. Ghaffari, Y. Huang, M.J. Slepian, J.A. Rogers, Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm, Proc. Natl. Acad. Sci. 111 (2014) 1927 LP – 1932. https://doi.org/10.1073/pnas.1317233111
[40] K.-I. Park, J.H. Son, G.-T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, K.J. Lee, Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates, Adv. Mater. 26 (2014) 2514–2520. https://doi.org/https://doi.org/10.1002/adma.201305659
[41] H. Zhang, X.-S. Zhang, X. Cheng, Y. Liu, M. Han, X. Xue, S. Wang, F. Yang, S. A S, H. Zhang, Z. Xu, A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies, Nano Energy. 12 (2015) 296–304. https://doi.org/https://doi.org/10.1016/j.nanoen.2014.12.038
[42] H. Kim, S.M. Kim, H. Son, H. Kim, B. Park, J. Ku, J.I. Sohn, K. Im, J.E. Jang, J.-J. Park, O. Kim, S. Cha, Y.J. Park, Enhancement of piezoelectricity via electrostatic effects on a textile platform, Energy Environ. Sci. 5 (2012) 8932–8936. https://doi.org/10.1039/C2EE22744D
[43] M.M. Alam, D. Mandal, Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility, ACS Appl. Mater. Interfaces. 8 (2016) 1555–1558. https://doi.org/10.1021/acsami.5b08168
[44] S.K. Karan, S. Maiti, A.K. Agrawal, A.K. Das, A. Maitra, S. Paria, A. Bera, R. Bera, L. Halder, A.K. Mishra, J.K. Kim, B.B. Khatua, Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezoelectric/wind/acoustic multi-energy harvester with remarkable power density, Nano Energy. 59 (2019) 169–183. https://doi.org/https://doi.org/10.1016/j.nanoen.2019.02.031
[45] S. Maiti, S. Kumar Karan, J. Lee, A. Kumar Mishra, B. Bhusan Khatua, J. Kon Kim, Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency, Nano Energy. 42 (2017) 282–293. https://doi.org/https://doi.org/10.1016/j.nanoen.2017.10.041
[46] Q. Zheng, H. Zhang, H. Mi, Z. Cai, Z. Ma, S. Gong, High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films, Nano Energy. 26 (2016) 504–512. https://doi.org/https://doi.org/10.1016/j.nanoen.2016.06.009
[47] S.K. Ghosh, D. Mandal, Efficient natural piezoelectric nanogenerator: Electricity generation from fish swim bladder, Nano Energy. 28 (2016) 356–365. https://doi.org/https://doi.org/10.1016/j.nanoen.2016.08.030
[48] K.Y. Lee, D. Kim, J.-H. Lee, T.Y. Kim, M.K. Gupta, S.-W. Kim, Unidirectional High-Power Generation via Stress-Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator, Adv. Funct. Mater. 24 (2014) 37–43. https://doi.org/https://doi.org/10.1002/adfm.201301379
[49] B. Dudem, D.H. Kim, L.K. Bharat, J.S. Yu, Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting, Appl. Energy. 230 (2018) 865–874. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.09.009
[50] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna, Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering, J. Tissue Eng. Regen. Med. 5 (2011) e17–e35. https://doi.org/https://doi.org/10.1002/term.383
[51] P.R. Bidez, S. Li, A.G. MacDiarmid, E.C. Venancio, Y. Wei, P.I. Lelkes, Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts, J. Biomater. Sci. Polym. Ed. 17 (2006) 199–212. https://doi.org/10.1163/156856206774879180
[52] C. Ribeiro, V. Sencadas, D.M. Correia, S. Lanceros-Méndez, Piezoelectric polymers as biomaterials for tissue engineering applications, Colloids Surfaces B Biointerfaces. 136 (2015) 46–55. https://doi.org/https://doi.org/10.1016/j.colsurfb.2015.08.043
[53] C. Frias, J. Reis, F. Capela e Silva, J. Potes, J. Simões, A.T. Marques, Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation, J. Biomech. 43 (2010) 1061–1066. https://doi.org/https://doi.org/10.1016/j.jbiomech.2009.12.010
[54] H.-F. Guo, Z.-S. Li, S.-W. Dong, W.-J. Chen, L. Deng, Y.-F. Wang, D.-J. Ying, Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications, Colloids Surfaces B Biointerfaces. 96 (2012) 29–36. https://doi.org/https://doi.org/10.1016/j.colsurfb.2012.03.014
[55] Y. Nie, P. Deng, Y. Zhao, P. Wang, L. Xing, Y. Zhang, X. Xue, The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor, Nanotechnology. 25 (2014) 265501. https://doi.org/10.1088/0957-4484/25/26/265501
[56] X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, Z.L. Wang, Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor, Nanotechnology. 24 (2013) 225501. https://doi.org/10.1088/0957-4484/24/22/225501
[57] D. Zhang, Q. Mi, D. Wang, T. Li, MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator, Sensors Actuators B Chem. 339 (2021) 129923. https://doi.org/https://doi.org/10.1016/j.snb.2021.129923
[58] S. Joshi, M. Parmar, K. Rajanna, A novel gas flow sensing application using piezoelectric ZnO thin films deposited on Phynox alloy, Sensors Actuators A Phys. 187 (2012) 194–200. https://doi.org/https://doi.org/10.1016/j.sna.2012.08.032
[59] Y. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Self-Powered System with Wireless Data Transmission, Nano Lett. 11 (2011) 2572–2577. https://doi.org/10.1021/nl201505c
[60] N.R. Alluri, B. Saravanakumar, S.-J. Kim, Flexible, Hybrid Piezoelectric Film (BaTi(1–x)ZrxO3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor, ACS Appl. Mater. Interfaces. 7 (2015) 9831–9840. https://doi.org/10.1021/acsami.5b01760
[61] B. Saravanakumar, S. Soyoon, S.-J. Kim, Self-Powered pH Sensor Based on a Flexible Organic–Inorganic Hybrid Composite Nanogenerator, ACS Appl. Mater. Interfaces. 6 (2014) 13716–13723. https://doi.org/10.1021/am5031648
[62] W. Yan, G. Bai, R. Ye, X. Yang, H. Xie, S. Xu, Dual-mode luminescence tuning of Er3+ doped Zinc Sulfide piezoelectric microcrystals for multi-dimensional anti-counterfeiting and temperature sensing, Opt. Commun. 475 (2020) 126262. https://doi.org/https://doi.org/10.1016/j.optcom.2020.126262
[63] M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, Z.L. Wang, Self-powered environmental sensor system driven by nanogenerators, Energy Environ. Sci. 4 (2011) 3359–3363. https://doi.org/10.1039/C1EE01558C
[64] R. Li, Y. Yu, B. Zhou, Q. Guo, M. Li, J. Pei, Harvesting energy from pavement based on piezoelectric effects: Fabrication and electric properties of piezoelectric vibrator, J. Renew. Sustain. Energy. 10 (2018) 54701. https://doi.org/10.1063/1.5002731
[65] C.A. Nelson, S.R. Platt, D. Albrecht, V. Kamarajugadda, M. Fateh, Power harvesting for railroad track health monitoring using piezoelectric and inductive devices, in: Proc.SPIE, 2008. https://doi.org/10.1117/12.775884
[66] N. Bosso, M. Magelli, N. Zampieri, Application of low-power energy harvesting solutions in the railway field: a review, Veh. Syst. Dyn. 59 (2021) 841–871. https://doi.org/10.1080/00423114.2020.1726973
[67] A. Erturk, G. Delporte, Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms, Smart Mater. Struct. 20 (2011) 125013. https://doi.org/10.1088/0964-1726/20/12/125013
[68] W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao, H. Zhang, W. Yang, Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures, Nano Energy. 55 (2019) 516–525. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.10.049
[69] O. Puscasu, N. Counsell, M.R. Herfatmanesh, R. Peace, J. Patsavellas, R. Day, Powering Lights with Piezoelectric Energy-Harvesting Floors, Energy Technol. 6 (2018) 906–916. https://doi.org/https://doi.org/10.1002/ente.201700629
[70] S. Orrego, K. Shoele, A. Ruas, K. Doran, B. Caggiano, R. Mittal, S.H. Kang, Harvesting ambient wind energy with an inverted piezoelectric flag, Appl. Energy. 194 (2017) 212–222. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.03.016
[71] L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, W. Yang, Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor, Nano Energy. 50 (2018) 632–638. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.05.068
[72] G. Wang, Y. Li, H. Cui, X. Yang, C. Yang, N. Chen, Acceleration self-compensation mechanism and experimental research on shock wave piezoelectric pressure sensor, Mech. Syst. Signal Process. 150 (2021) 107303. https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107303
[73] I. Payo, J.M. Hale, Dynamic characterization of piezoelectric paint sensors under biaxial strain, Sensors Actuators A Phys. 163 (2010) 150–158. https://doi.org/https://doi.org/10.1016/j.sna.2010.08.005