Bulk Lead-Free Piezoelectric Perovskites and their Applications


Bulk Lead-Free Piezoelectric Perovskites and their Applications

M. Rizwan, A. Ayub, S. Fatima, F. Aleena, I. Ilyas, A. Shoukat

Perovskites are an interesting class of materials that have tremendous applications as actuators, sensors and in photovoltaics. Lead based perovskites exhibit piezoelectricity and other interesting properties and thus have conquered the ceramic industry for a long time. Lead free piezoelectric perovskites are the need of the hour because lead based piezoceramics are toxic and a danger to the environment. There are various contenders of lead free alternatives of lead zirocnate-titnate (PZT) based ceramics including potassium-sodium niobate, barium titanate, bismuth based perovskites that exhibit similar piezoelectric and ferroelectric properties in comparison to PZT ceramics. These lead free piezoceramics and their important properties and respective applications such as sensors, transducers and actuators, is briefly explored in this chapter.

Piezoelectricity, Ceramics, BNT, Phase Boundary, Sensors, Actuators

Published online 2022/09/01, 37 pages

Citation: M. Rizwan, A. Ayub, S. Fatima, F. Aleena, I. Ilyas, A. Shoukat, Bulk Lead-Free Piezoelectric Perovskites and their Applications, Materials Research Foundations, Vol. 131, pp 222-258, 2022

DOI: https://doi.org/10.21741/9781644902097-8

Part of the book on Advanced Functional Piezoelectric Materials and Applications

[1] A. Verma, A. Kumar, Bulk modulus of cubic perovskites, J. Alloy. Comp. 541 (2012) 210-214. https://doi.org/10.1016/j.jallcom.2012.07.027
[2] D.P. Agrawal, Different Types of Transducers, in Embedded Sensor Systems, Springer. (2017) 65-104. https://doi.org/10.1007/978-981-10-3038-3_3
[3] E. Aksel, J.L. Jones, Advances in lead-free piezoelectric materials for sensors and actuators, Sensors. 10 (2010) 1935-1954. https://doi.org/10.3390/s100301935
[4] E. Aksel, J.S. Forrester, J.C. Nino, K. Page, D.P. Shoemaker, J.L. Jones, Local atomic structure deviation from average structure of Na0.5Bi0.5TiO3: Combined x-ray and neutron total scattering study, Phys. Rev. B. 87 (2013) 104110- 104113. https://doi.org/10.1103/PhysRevB.87.104113
[5] A. Arnau, Piezoelectric transducers and applications, second de., Springer., Berlin, 2004, pp. 97-116 https://doi.org/10.1007/978-3-662-05361-4
[6] P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, N.A. Spaldin, Theoretical prediction of new high-performance lead-free piezoelectrics, Chem. Mater. 17 (2005)1376-1380. https://doi.org/10.1021/cm0480418
[7] N. Balke, D.C. Lupascu, T. Granzow, J. Rödel, Fatigue of lead zirconate titanate ceramics II: sesquipolar loading, J.Amer. Ceram.Soc. 90(4) (2007)1088-1093. https://doi.org/10.1111/j.1551-2916.2007.01521.x
[8] D. Berlincourt, H. Jaffe, Elastic and piezoelectric coefficients of single-crystal barium titanate, Phys.Rev.111 (1958)140-143. https://doi.org/10.1103/PhysRev.111.143
[9] S.Bhattacharjee, D. Pandey, Effect of stress induced monoclinic to tetragonal phase transformation in the multiferroic (1-x)BiFeO3-xPbTiO3 system on the width of the morphotropic phase boundary and the tetragonality, J.App.Phys. 110 (2011) 084100- 084105. https://doi.org/10.1063/1.3647755
[10] R.J. Bobber, New types of transducers, in Underwater Acoustics and Signal Processing, Springer. (1981) 243-261. https://doi.org/10.1007/978-94-009-8447-9_20
[11] K. Brajesh, M. Abebe, R. Ranjan, Structural transformations in morphotropic-phase-boundary composition of the lead-free piezoelectric system Ba(Ti0.8Zr0.2)O3−(Ba0.7Ca0.3)TiO3, Phys. Rev.B. 94 (2016) 104100-104108. https://doi.org/10.1103/PhysRevB.94.104108
[12] X. Chao, Z. Wang, Y. Tian, Y. Zhou, Z. Yang, Ba(Cu0.5W0.5)O3-induced sinterability, electrical and mechanical properties of (Ba0.85Ca0.15Ti0.90Zr0.10)O3 ceramics sintered at low temperature, MRS. Bulletin. 66 (2015) 16-25. https://doi.org/10.1016/j.materresbull.2015.02.022
[13] F. Chen, Q. Zhang, J. Li, Y. Qi, C. Lu, X. Chen, X. Ren, Y. Zhao, Sol-gel derived multiferroic BiFeO3 ceramics with large polarization and weak ferromagnetism, Appl. Phys. Lett. 89 (2006) 092905-092910. https://doi.org/10.1063/1.2335367
[14] T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, Y. Liu, Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics, J.Mater.Sci. 47 (2012) 4612-4619. https://doi.org/10.1007/s10853-012-6326-1
[15] Y. Cui, X. Liu, M. Jiang, Y. Hu, Q. Su, H. Wang, Lead-free (Ba0.7Ca0.3)TiO3-Ba(Zr0.2Ti0.8)O3-xwt% CuO ceramics with high piezoelectric coefficient by low-temperature sintering, J. Mater. Sci.: Mater. Electron. 23 (2012) 1342-1345. https://doi.org/10.1007/s10854-011-0596-2
[16] Y. Cui, C. Yuan, X. Liu, X.Zhao, X.Shan, Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-Y2O3 ceramics with large piezoelectric coefficient obtained by low-temperature sintering, J. Mater. Sci.: Mater. Electron. 24 (2013) 654-657. https://doi.org/10.1007/s10854-012-0785-7
[17] Y. Cui, X. Liu, M. Jiang, X. Zhao, X. Shan, W. Li, C. Yuan, C.Zhou, Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-CeO2 ceramics with high piezoelectric coefficient obtained by low-temperature sintering, Ceram. Intern. 38 (2012) 4761-4764. https://doi.org/10.1016/j.ceramint.2012.02.063
[18] M. Davis, Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals, J.Electroceram. 19 (2007) 25-47. https://doi.org/10.1007/s10832-007-9046-1
[19] O. Deubzer, Y. Baron, N. Nissen, K.-D. Lang, Status of the RoHS directive and exemptions. in 2016 Electronics Goes Green 2016 (EGG), IEEE.(2016) https://doi.org/10.1109/EGG.2016.7829868
[20] Y. Doshida, S. Kishimoto, T. Irieda, H. Tamura, Y. Tomikawa, S. Hirose, Double-mode miniature cantilever-type ultrasonic motor using lead-free array-type multilayer piezoelectric ceramics, Jpn. J.App. Phys. 47 (2008) 4240-4242. https://doi.org/10.1143/JJAP.47.4242
[21] Y. Doshida, S. Kishimoto, K. Ishii, H. Kishi, H. Tamura, Y. Tomikawa, S. Hirose, Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics, Jpn. J.Appl.Phys. 46 (2007) 4920-4921. https://doi.org/10.1143/JJAP.46.4921
[22] P. Fan, K. Liu, W. Ma, H. Tan, Q. Zhang, L. Zhang, C. Zhou, D. Salamon, S.-T. Zhang, Y. Zhang, Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators, J. Materiom. 7 (2021) 508-544. https://doi.org/10.1016/j.jmat.2020.11.009
[23] D. Fernández-Benavides, L. Cervera-Chiner, Y. Jiménez, O.A. de Fuentes, A. Montoya, J. Muñoz-Saldaña, A novel bismuth-based lead-free piezoelectric transducer immunosensor for carbaryl quantification, ens. Actuators B Chem. 285 (2019) 423-430. https://doi.org/10.1016/j.snb.2019.01.081
[24] T. Fujii, S. Watanabe, M. Suzuki, T. Fujiu, Application of lead zirconate titanate thin film displacement sensors for the atomic force microscope, J. Vac. Sci. Technol. B. 13 (1995)1119-1122. https://doi.org/10.1116/1.587914
[25] G.H. Haertling, Ferroelectric ceramics: history and technology, J.Amer. Ceram. Soc. 82 (1999) 797-818. https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
[26] A.A. Heitmann, G.A. Rossetti Jr, Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries, J J.Amer. Ceram. Soc. 97 (2014) 1661-1685. https://doi.org/10.1111/jace.12979
[27] P. Herzig, J. Zemann, AB3 nets built from corner-connected octahedra: geometries, electrostatic lattice energies, and stereochemical discussion, Z. Kristallogr. Krist. 205 (1993)85-97. https://doi.org/10.1524/zkri.1993.205.Part-1.85
[28] C.-H. Hong, H.-S. S.-S. Lee, K. Wang, H-Z. Yao, J-F. Li, J.-H. Gwon, N.V. Quyet, J-K. Jung, W. Jo, Ring-type rotary ultrasonic motor using lead-free ceramics, J. Sens. Sci. Tech. 24 (2015) 228 – 231 https://doi.org/10.5369/JSST.2015.24.4.228
[29] W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics, J.App.Phys.109 (2011) 014100-014110. https://doi.org/10.1063/1.3530737
[30] M. Johnsson, P. Lemmens, Perovskites and thin films-crystallography and chemistry, J. Phys. Cond. Matter. 20 (2008) 263990-264001. https://doi.org/10.1088/0953-8984/20/26/264001
[31] D. Jones, S. Prasad, J. Wallace, Piezoelectric materials and their applications. in Key Engineering Materials, Trans. Tech. Publ.122 (1996) 71-144 https://doi.org/10.4028/www.scientific.net/KEM.122-124.71
[32] T. Kainz, M. Naderer, D. Schütz, O. Fruhwirth, F.-A. Mautner, K. Reichmann, Solid state synthesis and sintering of solid solutions of BNT-Xbkt, J.Euro.Ceram.Soc. 34 (2014) 3685-3697. https://doi.org/10.1016/j.jeurceramsoc.2014.04.040
[33] A.K. Kalyani, K. Brajesh, A. Senyshyn,R. Ranjan, Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3, App.Phys.Lett. 104 (2014) 252900-252906. https://doi.org/10.1063/1.4885516
[34] X-Y.Kang, Z.-H. Zhao, Y.-K. Lv, Y.Dai, BNT-based multi-layer ceramic actuator with enhanced temperature stability, J.Alloy.Comp. 771 (2019) 541-546. https://doi.org/10.1016/j.jallcom.2018.08.311
[35] M. Karpelson, G.-Y. Wei, R.J. Wood, Driving high voltage piezoelectric actuators in microrobotic applications, Sen. Actuat. A. Phys. 176 (2012) 78-89. https://doi.org/10.1016/j.sna.2011.11.035
[36] C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science. 327 (2010) 1624-1627. https://doi.org/10.1126/science.1184087
[37] R.M. Langdon, Resonator sensors-a review,J.Phys.E. Sci.Instr. 18(2) (1985) 100- 103. https://doi.org/10.1088/0022-3735/18/2/002
[38] P.S. Lavers, The electronic structure of oxide perovskites and related materials, Doctor of Philosphy Theiss. (2015)
[39] H.J. Lee, S. Zhang, Y. Bar-Cohen, S. Sherrit, High temperature, high power piezoelectric composite transducers, Sens. 14 (2014)14526-14552. https://doi.org/10.3390/s140814526
[40] Q. Li, J. Wei, J. Cheng, J.Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics, J.Mater.Sci. 52 (2017) 229-237. https://doi.org/10.1007/s10853-016-0325-6
[41] W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Improved piezoelectric property and bright up conversion luminescence in Er doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 ceramics, J. Alloy. Comp. 583 (2014) 305-308. https://doi.org/10.1016/j.jallcom.2013.08.103
[42] W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics, Phys. Rev. Lett. 103 (2009) 257600- 257602. https://doi.org/10.1103/PhysRevLett.103.257602
[43] X. Liu, X.Tan, Giant strains in non-textured (Bi1/2Na1/2)TiO3 based lead free ceramics, Adv. Mater. 28(3) (2016) 574-578. https://doi.org/10.1002/adma.201503768
[44] J. Lv, X. Lou, J. Wu, Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics, J. Mater. Chem. C. 4 (2016) 6140-6151. https://doi.org/10.1039/C6TC01629D
[45] J. Lv, J. Wu, W. Wu, Enhanced Electrical Properties of Quenched (1-x)Bi1-ySmyFeO3-xBiScO3 Lead-Free Ceramics. The Journal of Physical Chemistry C, 119 (2015) 21105-21115. https://doi.org/10.1021/acs.jpcc.5b07249
[46] J. Ma, X. Liu, W. Li, High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering, J. Alloy.Comp. 581 (2013) 642-645. https://doi.org/10.1016/j.jallcom.2013.07.131
[47] R. Machado, V.B. dos Santos, D.A. Ochoa, E. Cerdeiras,L. Mestres, J.E. García, Elastic, dielectric and electromechanical properties of (Bi0.5Na0.5)TiO3-BaTiO3 piezoceramics at the morphotropic phase boundary region, J. Alloy. Comp. 690 (2017) 568-574. https://doi.org/10.1016/j.jallcom.2016.08.116
[48] B. Malič, M. Otoničar, K. Radan, J. Koruza, A. Heterogeneity challenges in multiple-element-modified Lead-free piezoelectric ceramics, Mater. 12 (2019) 4040-4049. https://doi.org/10.3390/ma12244049
[49] T. Matsuoka, H. Kozuka, K. Kitamura, H. Yamada, T. Kurahashi, M. Yamazaki, K. Ohbayashi, KNN-NTK composite lead-free piezoelectric ceramic, J. App. Phys. 116 (2014) 154100-154104. https://doi.org/10.1063/1.4898586
[50] H.D. Megaw, Crystal structure of double oxides of the perovskite type, Procee. Phys. Soc. 58 (1946) 128-133. https://doi.org/10.1088/0959-5309/58/2/301
[51] A. Navrotsky, D.J. Weidner, Perovskite: a structure of great interest to geophysics and materials science, Geophys. 45 (1989) https://doi.org/10.1029/GM045
[52] R. Nunamaker, Frequency control devices for mobile communications. in 25th Annual Symposium on Frequency Control, IEEE. (1971) https://doi.org/10.1109/FREQ.1971.199836
[53] G. Piazza, Piezoelectric aluminum nitride vibrating RF MEMS for radio front-end technology, University of California, Berkeley (2005) https://doi.org/10.1109/MWSYM.2006.249702
[54] A. Popovič, L. Bencze, J. Koruza, B. Malič, Vapour pressure and mixing thermodynamic properties of the KNbO3-NaNbO3 system, RSC Adva. 5(93) (2015) 76249-76256. https://doi.org/10.1039/C5RA11874C
[55] C. Randall, A. Kelnberger, G. Yang, R. Eitel, T. Shrout, High strain piezoelectric multilayer actuators-a material science and engineering challenge, J. Electroceram. 4 (2005) 177-191. https://doi.org/10.1007/s10832-005-0956-5
[56] W.M. Roberts, The synthesis and characterisation of lead-free piezoelectric ceramics, University of Birmingham.( 2012)
[57] J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead free piezoceramics, J. Amer. Ceram. Soc. 92 (2009)1153-1177. https://doi.org/10.1111/j.1551-2916.2009.03061.x
[58] T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics, J. App. Phys. 108 (2010)074100- 074107. https://doi.org/10.1063/1.3490249
[59] J.F. Rosenbaum, Bulk acoustic wave theory and devices, Artech House Acoustics Library (1988)
[60] Y. Saito, H. Takao, T. Tani, T.Nonoyama, K. Takatori, T. Homma, T.Nagaya, M. Nakamura, Lead-free piezoceramics, Nature. 432 (2004) 84-87. https://doi.org/10.1038/nature03028
[61] A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems, JPN. J. App. Phys. 38 (1999) 5560-5564.
[62] K. Sen, K.Singh, A. Gautam, M. Singh, Study of Dielectric and Ferroelectric Properties of Multiferroic BiCoxFe1-xO3 Ceramic, Integr. Ferroelectr. 120 (2010) 122-130. https://doi.org/10.1080/10584587.2010.504126
[63] H. Sengul, Life cycle analysis of quantum dot semiconductor materials, University of Illinois at Chicago. (2009)
[64] N. Setter, ABC of piezoelectric materials. Piezoelectric materials in devices, Swiss Institute Technol. (2002) 1-518
[65] Z. -Y. Shen, J.-F. Li, Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure, J. Ceram. Soci. Jpn. 118 (2010) 940-943. https://doi.org/10.2109/jcersj2.118.940
[66] K. Shibata, R. Wang, T. Tou, J. Koruza, Applications of lead-free piezoelectric materials, MRS. Bulletin. 43 (2018)612-616. https://doi.org/10.1557/mrs.2018.180
[67] V. Shuvaeva, D. Zekria, A. Glazer, Q. Jiang, S. Weber,P. , Bhattacharya, P.Thomas, Local structure of the lead-free relaxor ferroelectric (KxNa1−x)0.5Bi0.5TiO3, Phys.Rev. B. 71 92005) 174114.
[68] V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Large bulk polarization and regular domain structure in ceramic BiFeO3, App. Phys. Lett. 90 (2007) 172110-172115. https://doi.org/10.1063/1.2731312
[69] I. Sinclair, Sensors and transducers, third ed. Elsevier, Boston 2000, pp. 220-256
[70] G. Smolensky, V. Isupov, A. Agranovskaya, N. Krainik, New materials of AIIBIVOVI type, Trans. Sov. Phys. Solid State. 2 (1961)2651-2654.
[71] H.Sun, S. Duan, X. Liu, D. Wang, H. Sui, Lead-free Ba0.98Ca0.02Zr0.02Ti0.98O3 ceramics with enhanced electrical performance by modifying MnO2 doping content and sintering temperature, J. Alloy. Comp. 670 (2016) 262-267. https://doi.org/10.1016/j.jallcom.2016.02.008
[72] H. Takahashi, Y. Numamoto, J.T. Tani, S. Tsurekawa, Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering, Jpn. J. App. Phys. 45 (2006) 7400- 7405. https://doi.org/10.1143/JJAP.45.7405
[73] T. Takenaka, K. -I.M.K.-I. Maruyama, K.S.K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. App. Phys. 30 (1991) 2230-2236. https://doi.org/10.1143/JJAP.30.2236
[74] H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong, K.Wang, Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics, Mater.Today. 29 (2019) 37-48. https://doi.org/10.1016/j.mattod.2019.04.016
[75] K. Uchino, Glory of piezoelectric perovskites. Science and Technology of Advanced Materials, T&F. (2015) 1-6 https://doi.org/10.1088/1468-6996/16/4/046001
[76] A. Verma, A.Kumar, Bulk modulus of cubic perovskites, J. Alloy. Comp. 541 (2012) 210-214. https://doi.org/10.1016/j.jallcom.2012.07.027
[77] D. Viehland, Effect of uniaxial stress upon the electromechanical properties of various piezoelectric ceramics and single crystals, J. Amer.Ceram. Soc. 89 (2006) 775-785. https://doi.org/10.1111/j.1551-2916.2005.00879.x
[78] S. Wada, S. Suzuki, T. Noma, T.Suzuki, M. Osada, M.Kakihana, S-E. Park, L.E. Cross, T.R. Shrout, Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations, Jpn. J. App. Phys. 38 (1999) 5500-5505. https://doi.org/10.1143/JJAP.38.5500
[79] D. Wang, Z. Jiang, B. Yang, S. Zhang, M. Zhang, F. Guo, W. Cao, Phase transition behavior and high piezoelectric properties in lead-free BaTiO3-CaTiO3-BaHfO3 ceramics, J. Mater. Sci. 49 (2014) 62-69. https://doi.org/10.1007/s10853-013-7650-9
[80. P. Wang, Y. Li, Y.Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature, J. Euro. Ceram. Soci. 31 (2011) 2005-2012. https://doi.org/10.1016/j.jeurceramsoc.2011.04.023
[81] R.E. Watson, Analytic Hartree-Fock solutions for O, Phys. Rev. 111 (1958) 1100-1108. https://doi.org/10.1103/PhysRev.111.1108
[82] D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, Crystal and domain structure of the BiFeO3-PbTiO3 solid solution, J. Appl. Phys. 94 (2003)3313-3318. https://doi.org/10.1063/1.1595726
[83] B. Wu, H. Wu, J. Wu, D. Xiao, Zhu, J.,Pennycook, S.J., Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence, J.Amer. Chem. Soc. 138 (2016) 15459-15464. https://doi.org/10.1021/jacs.6b09024
[84] J. Wu, Advances in lead-free piezoelectric materials, Springer. 98(2018) 552-624 https://doi.org/10.1016/j.pmatsci.2018.06.002
[85] J. Wu, Perovskite lead-free piezoelectric ceramics, J. App.Phys. 127 (2020)190900- 190901. https://doi.org/10.1063/5.0006261
[86] L. Wu, D. Xiao, J. Wu, Y. Sun, D. Lin, J. Zhu, P. Yu, Y. Zhuang, Q. Wei, Good temperature stability of K0.5Na0.5NbO3 based lead-free ceramics and their applications in buzzers, J. Euro. Ceram. Soc. 28 (2008) 2963-2968. https://doi.org/10.1016/j.jeurceramsoc.2008.04.033
[87] K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior piezoelectric properties in potassium-sodium niobate lead free ceramics, Adva. Mater. 28 (201) 8519-8523. https://doi.org/10.1002/adma.201601859
[88] G. Yuan, S.W. Or, Y. Wang, Z. Liu, J. Liu, JPreparation and multi-properties of insulated single-phase BiFeO3 ceramics, Solid State Commun. 138 (2006 ) 76-81. https://doi.org/10.1016/j.ssc.2006.02.005
[89] S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system, App. Phys. Lett. 91 (2007) 112900-112906. https://doi.org/10.1063/1.2783200
[90] Q. Zhao, J. Zhao, X. Tan, Classification, preparation process and its equipment and applications of piezoelectric ceramic, Mater. Phys. Chem. 1 (2018) https://doi.org/10.18282/mpc.v1i1.560
[91] X.-G. Zhao, D. Yang, J.-C. Ren, Y. Sun, Z. Xiao, L. Zhang, Rational design of halide double perovskites for optoelectronic applications, Joule. 2 (2018)1662-1673. https://doi.org/10.1016/j.joule.2018.06.017
[92] Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics, Phys. Rev. B. 70 (2004) 024100- 024107. https://doi.org/10.1103/PhysRevB.70.024107
[93] T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials, Prog. Mater. Sci. PROG. 298 (2018) 552-624. https://doi.org/10.1016/j.pmatsci.2018.06.002
[94] T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy Environ. Sci.10 (2017) 528-537. https://doi.org/10.1039/C6EE03597C
[95] P.-F. Zhou, B.-P. Zhang, L. Zhao, X.-K. Zhao, L.-F. Zhu, L. Cheng, J.-F. Li, High piezoelectricity due to multiphase coexistence in low-temperature sintered (Ba, Ca)(Ti, Sn)O3-CuOx ceramics., App. Phys. Lett. 103 (2013) 172900-172904. https://doi.org/10.1063/1.4826933
[96] X. Zhu, Piezoelectric ceramic materials: processing, properties, characterization, and applications, UK ed., Nova Science Publishers Inc., New York , 2010, pp.1-63
[97] X.N. Zhu, W. Zhang, X.M. Chen, Enhanced dielectric and ferroelectric characteristics in Ca-modified BaTiO3 ceramic, AIP. Adv. 3 (2013) 082120-082125. https://doi.org/10.1063/1.4819451
[98] J, Zylberberg, A. Belik, E. Takayama-Muromachi, Z.-G. Ye, Bismuth aluminate: a new high-Tc lead-free piezo-/ferroelectric, Chem. Mater. 19 (2007)6385-6390. https://doi.org/10.1021/cm071830f