Piezoelectric Composites and their Applications


Piezoelectric Composites and their Applications

M. Ramesh, M. Muthukrishnan

The advancement of electronics is inextricably linked to breakthroughs in materials science. Due to their diverse mechanical, physical, and chemical properties, piezoelectric composites have sparked a lot of scientific interest in recent years. Because of their great tailorability, piezoelectric composites made of a piezoelectric ceramic and polymers are intriguing materials. Furthermore, mechanical strength, cheap cost, bio-compatibility, and ease of fabrication make organic materials superior to inorganic materials and make them as better alternative materials in modern manufacturing technologies. This chapter provides a detailed review of current research and advancements on piezoelectric composites and their creative applications.

Piezoelectric Composites, Ceramics, Polymers, Biocompatibility, Applications

Published online 2022/09/01, 27 pages

Citation: M. Ramesh, M. Muthukrishnan, Piezoelectric Composites and their Applications, Materials Research Foundations, Vol. 131, pp 138-164, 2022

DOI: https://doi.org/10.21741/9781644902097-5

Part of the book on Advanced Functional Piezoelectric Materials and Applications

[1] A. Manbachi, R.S.C. Cobbold, Development and application of piezoelectric materials for ultrasound generation and detection, Ultrasound. 19 (2011) 187-96. https://doi.org/10.1258/ult.2011.011027
[2] Harper, Douglas. “Piezoelectric”. Online Etymology Dictionary.
[3] P. Dineva, D. Gross, R. Müller, T. Rangelov, Dynamic fracture of piezoelectric materials. Springer, 2014, 212, XIV, 249. https://doi.org/10.1007/978-3-319-03961-9
[4] ANSI/IEEE, IEEE standard on piezoelectricity. IEEE Standard (1987) 176-187.
[5] K.A. Klicker, J.V. Biggers, R.E. Newnham, J. Am. Ceram. Soc. 64 (1981) 5-9. https://doi.org/10.1111/j.1151-2916.1981.tb09549.x
[6] H. Liu, J. Zhong, C. Lee, S.W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phy. Rev. 5 (2018) 041306. https://doi.org/10.1063/1.5074184
[7] M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu, X. Wu, Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Phys. Rev. B 50 (1994) 5941-5949. https://doi.org/10.1103/PhysRevB.50.5941
[8] S. Zhang, L. Laurent, S. Rhee, C.A. Randall, T.R. Shrout, Shear-mode piezoelectric properties of Pb(Yb1/2Nb1/2)O3-PbTiO3 single crystals. Appl. Phy. Lett. 81 (2002) 892-894. https://doi.org/10.1063/1.1497435
[9] T.Y. Ke, H.A. Chen, H.S. Sheu, J.W. Yeh, H.N. Lin, C.Y. Lee, H.T. Chiu, Sodium niobate nanowire and its piezoelectricity. J. Phys. Chem. C 112 (2008) 8827-8831. https://doi.org/10.1021/jp711598j
[10] T. Ikeda, Y. Tanaka, H. Toyoda, Piezoelectric properties of triglycine sulphate. J. Phys. Soc. Japan 16 (1961) 2593-2594. https://doi.org/10.1143/JPSJ.16.2593
[11] S. Mishra, L. Unnikrishnan, S.K. Nayak, S. Mohanty, Advances in piezoelectric polymer composites for energy harvesting applications: A systematic review. Macromol. Mater. Eng. 304 (2018) 1800463. https://doi.org/10.1002/mame.201800463
[12] M. Ramesh, A. Ravanan. One-dimensional nanomaterials for supercapacitors. Morphology Design Paradigms for Supercapacitors, 2020, pp. 33-58. https://doi.org/10.1201/9780429263347-2
[13] M. Ramesh, M. Muthukrishnan. Bio-Based Magnetic metal organic framework nanocomposites. Metal-Organic Framework Nanocomposites: From Design to Applications, 2020, pp. 167-190. https://doi.org/10.1201/9780429346262-6
[14] A. Yousefi-Koma, Piezoelectric ceramics as intelligent materials, Fundamentals of Smart Materials, The Royal Society of Chemistry, (2018) p. 233.
[15] S. Das, A.K. Biswal, A. Roy, Fabrication of flexible piezoelectric PMN-PT based composite films for energy harvesting. IOP Conf Ser: Mater Sci Eng 178 (2017) 012020. https://doi.org/10.1088/1757-899X/178/1/012020
[16] M. Ramesh, M. Muthukrishnan, A. Khan. Metal-organic frameworks and permeable natural polymers for reasonable carbon dioxide fixation. Metal-Organic Frameworks for Chemical Reactions, 2021, pp. 417-440. https://doi.org/10.1016/B978-0-12-822099-3.00017-4
[17] W.K. Sakamoto, P. Marin-Franch, D. Tunnicliffe, D.K. Das-Gupta, Lead zirconatetitanate/polyurethane (PZT/PU) composite for acoustic emission sensors. Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225), 2001, doi:10.1109/ceidp.2001.963479.
[18] M.R. Gorman, W.H. Prosser, AE source orientation by plate wave analysis. J. Acoustic Emission, 9 (1990) 283-288.
[19] Uchino K., Piezoelectro Composites. In: Saleem Hashmi (ed), Reference Module in Materials Science andMaterials Engineering. Oxford: Elsevier; 2016, pp. 1-12.
[20] M. Ramesh, N. Kuppuswamy, S. Praveen, Metal-organic framework for batteries and supercapacitors. Metal-Organic Frameworks for Chemical Reactions, 2021, pp.19-36. https://doi.org/10.1016/B978-0-12-822099-3.00002-2
[21] J. Jin, Q. Wang, S.T. Quek, Lamb wave propagation in a metallic semi-infinite medium covered with piezoelectric layer. Int. J. Solids Struct. 39 (2002) 2547-2556. https://doi.org/10.1016/S0020-7683(02)00091-4
[22] S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutor. 13 (2011) 443-461. https://doi.org/10.1109/SURV.2011.060710.00094
[23] H. Li, C. Tian, Z. D. Deng, Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1 (2014) 041301. https://doi.org/10.1063/1.4900845
[24] A. Toprak, O. Tigli, Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 1 (2014) 031104. https://doi.org/10.1063/1.4896166
[25] S. Mishra, L. Unnikrishnan, S.K. Nayak, S. Mohanty, Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol. Mater. Eng. 304 (2018) 1800463. https://doi.org/10.1002/mame.201800463
[26] T.W. Brown, T. Bischof-Niemz, K. Blok, C. Breyer, H. Lund, B.V. Mathiesen, Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 92 (2018) 834-847. https://doi.org/10.1016/j.rser.2018.04.113
[27] J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian, J. Zhu, J. Mu, X. Hou, W. Geng, J. Cho, Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 43 (2018) 326-339. https://doi.org/10.1016/j.nanoen.2017.11.039
[28] D. P. Arnold, Review of microscale magnetic power generation. IEEE Trans. Magn. 43 (2007) 3940-3951. https://doi.org/10.1109/TMAG.2007.906150
[29] Y. Suzuki, Recent progress in MEMS electret generator for energy harvesting. IEE J Trans. Electr. Electron. Eng. 6 (2011) 101-111. https://doi.org/10.1002/tee.20631
[30] H. Liu, K. H. Koh, C. Lee, Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Appl. Phys. Lett. 104 (2014) 053901. https://doi.org/10.1063/1.4863565
[31] H. Liu, Z. Ji, T. Chen, L. Sun, S. C. Menon, C. Lee, An intermittent self-powered energy harvesting system from low-frequency hand shaking. IEEE Sens. J. 15 (2015) 4782-4790. https://doi.org/10.1109/JSEN.2015.2411313
[32] A. Rjafallah, A. Hajjaji, D. Guyomar, K. Kandoussi, F. Belhora, Y. Boughaleb, Modeling of polyurethane/lead zirconatetitanate composites for vibration energy harvesting. J. Compos. Mater. 53 (2018) 613-623. https://doi.org/10.1177/0021998318788604
[33] P. Mitcheson, T. Green, E. Yeatman, A. Holmes, Architectures for vibration-driven micropower generators. J. Microelectromech. Syst. 13 (2004) 429-440. https://doi.org/10.1109/JMEMS.2004.830151
[34] B. Maamer, A. Boughamoura, A.M.F. El-Bab, L.A. Francis, F. Tounsi, A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers. Manag. 199 (2019) 111973. https://doi.org/10.1016/j.enconman.2019.111973
[35] S. Khalid, I. Raouf, A. Khan, N. Kim, H.S. Kim, A Review of human-powered energy harvesting for smart electronics: recent progress and challenges. Int. J. Precis. Eng. Manuf. Green Technol. 6 (2019) 821-851. https://doi.org/10.1007/s40684-019-00144-y
[36] S. Roundy, P.K. Wright, J.M. Rabaey, Energy scavenging for wireless sensor networks; Springer: Boston, MA, USA, 2004. https://doi.org/10.1007/978-1-4615-0485-6
[37] K. Uchino, T. Ishii, Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400 (2010) 305-320. https://doi.org/10.1080/00150193.2010.505852
[38] E. Fukada, Piezoelectric properties of organic polymers. Annals of the New York Acad. Sci. 238 (1974) 7-25. https://doi.org/10.1111/j.1749-6632.1974.tb26776.x
[39] E. Fukada, Piezoelectricity of natural biomaterials. Ferroelect. 60 (1984) 285-296. https://doi.org/10.1080/00150198408017529
[40] E. Fukada, K. Hara, Piezoelectric effect in blood vessel walls. J. Phys. Soc. Japan. 26 (1969) 777-780. https://doi.org/10.1143/JPSJ.26.777
[41] E. Fukada, H. Ueda, Piezoelectric effect in muscle. Japan. J. Appl. Phy. 9 (1970) 844. https://doi.org/10.1143/JJAP.9.844
[42] V.V. Lemanov, S.N. Popov, G.A. Pankova, Piezoelectric properties of crystals of some protein amino acids and their related compounds. Phy. Sol. Sta. 44 (2002) 1929-1935. https://doi.org/10.1134/1.1514783
[43] Y. Zhu, S. Zhang, J. Wen, Influence of orientation on the piezoelectric properties of deoxyribonucleic acid. Ferroelect. 101 (1990) 129-139. https://doi.org/10.1080/00150199008016509
[44] D. De Rossi, C. Domenici, P. Pastacaldi. Piezoelectric properties of dry human skin. IEEE Trans. Elect. Insul. El-21 (1986) 511-517. https://doi.org/10.1109/TEI.1986.349102
[45] K. Park, W. Chen, M.A. Chekmareva, D.J. Foran, J.P. Desai. Electromechanical coupling factor of breast tissue as a biomarker for breast cancer. IEEE Trans. Biomed. Eng. 65 (2018) 96-103. https://doi.org/10.1109/TBME.2017.2695103
[46] N. More, G. Kapusetti, Piezoelectric material – A promising approach for bone and cartilagere generation. Medi. Hypoth. 108 (2017) 10-16. https://doi.org/10.1016/j.mehy.2017.07.021
[47] E.S. Sazonov, J.M. Fontana. A sensor system for automatic detection of food intake through non-invasive monitoring of chewing. IEEE Sens. J. 12 (2012) 1340-1348. https://doi.org/10.1109/JSEN.2011.2172411
[48] A.H. Rajabi, M. Jaffe, T.L. Arinzeh, Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 24 (2015) 12-23. https://doi.org/10.1016/j.actbio.2015.07.010
[49] Y. Zhang, F. Zhang, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horizon. 2 (2015) 133-254. https://doi.org/10.1039/C4MH00147H
[50] S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, et al. A survey of wearable devices and challenges. IEEE Communi. Sur. Tutor. 19 (2017) 2573-2620. https://doi.org/10.1109/COMST.2017.2731979
[51] H.A. Sonar, J. Paik, Soft pneumatic actuator skin with piezoelectric sensors for vibrotactile feedback. Front. Robot. AI 2 (2016) 1-11. https://doi.org/10.3389/frobt.2015.00038
[52] K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl. Polym. Mater. 2 (2020) 862-878. https://doi.org/10.1021/acsapm.9b00846
[53] L. Su, Z. Jiang, Z. Tian, H. Wang, H. Wang, Y. Zi, Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence. Nano Energy 79 (2021) 105431. https://doi.org/10.1016/j.nanoen.2020.105431
[54] K. Lee, S. Jang, K.L. Kim, M. Koo, C. Park, S. Lee, J. Lee, G. Wang, C. Park, Artificially intelligent tactile ferroelectric skin. Adv. Sci. (2020) 2001662. https://doi.org/10.1002/advs.202001662
[55] B. Zhao, J. Hu, W. Ren, F. Xu, X. Wu, P. Shi, Z.G. Ye, A new biosensor based on PVDF film for detection of nucleic acids. Ceram. Int. 41 (2015) S602-S606. https://doi.org/10.1016/j.ceramint.2015.03.253
[56] S.K. Hwang, H.Y. Hwang, Development of a tactile sensing system using piezoelectric robot skin materials. Smart Mater. Struct. 22 (2013) 055004. https://doi.org/10.1088/0964-1726/22/5/055004
[57] Jing Zhang, Zhong MA, Sheng Li, Lijia Pan, Yi Shi, Recent research progress in biomimetic tactile sensors. SCIENTIA SINICA Technologica, 50 (2020) 1-16. https://doi.org/10.1360/SST-2019-0204
[58] Encyclopedia Brtitannica.
[59] B. İlik, A. Koyuncuoğlu, H. Uluşan, S. Chamanian, D. Işık, Ö. Şardan-Sukas, H. Külah In: Proceedings of Thin Film PZT Acoustic Sensor for Fully Implantable Cochlear Implants 1 (2017) 366. https://doi.org/10.3390/proceedings1040366
[60] J. Chung, Y. Jung, S. Hur, J. H. Kim, S. J. Kim, W. D. Kim, Y.H. Choung, S.H. Oh, Development and characterization of a biomimetic totally implantable artificial basilar membrane system, Front. Bioeng. Biotechnol., (2021), https://doi.org/10.3389/fbioe.2021.693849. https://doi.org/10.3389/fbioe.2021.693849
[61] A.J. Maniglia, H. Abbass, T. Azar, M. Kane, P. Amantia, S. Garverick, et al. The middle bioelectronic microphone for a totally implantable cochlear hearing device for profound and total hearing loss. Otol. Neurotol. 20 (1999) 602-611.
[62] J.H. Kwak, Y. Jung, K. Song, S. Hur, Fabrication of Si3N4-based artificial basilar membrane with ZnO nanopillar using MEMS process. J. Sensor. (2017), https://doi.org/10.1155/2017/1308217. https://doi.org/10.1155/2017/1308217
[63] J. Jang, J.H. Jang, H. Choi, Biomimetic artificial basilar membranes. Adv. Healthc. Mater. 6 (2017) 1700674. https://doi.org/10.1002/adhm.201700674
[64] P. Hennet, Piezoelectric bone surgery: A review of the literature and potential applications in veterinary oromaxillofacial surgery. Front. Vet. Sci. 2 (2015) 8. https://doi.org/10.3389/fvets.2015.00008
[65] M. Thomas, U. Akula, K. K. R. Ealla, N. Gajjada, Piezosurgery: A boon for modern periodontics. J. Int. Soc. Prev. Community Dent. 7 (2017) 1-7. https://doi.org/10.4103/2231-0762.200709
[66] N. Vyas, E. Pecheva, H. Dehghani, R.L. Sammons, Q.X. Wang, D.M. Leppinen, et al. High speed imaging of cavitation around dental ultrasonic Scaler tips. PLoS One. 11 (2016) e0149804. https://doi.org/10.1371/journal.pone.0149804
[67] T.K. Corcoran, R. Venkataramanan, R.M. Hoffman, M.P. George, A. Petrov, T. Richards, et al. Systemic delivery of atropine sulfate by the microdose dry-powder inhaler. J. Aerosol Medi. Pulmo. Drug Deliv. 26 (2013) 46-55. https://doi.org/10.1089/jamp.2011.0948
[68] H. Wang, T. Zhang, M. Zhao. Micro-dosing of fine cohesive powders actuated by pulse inertia force. Micromach. 9 (2018) 73. https://doi.org/10.3390/mi9020073
[69] S. Kar, S. McWhorter, S.M. Ford, S.A. Soper. Piezoelectric mechanical pump with nanoliter per minute pulse-free flow delivery for pressure pumping in micro-channels. The Analyst. 123 (1998) 1435-1441. https://doi.org/10.1039/a800052b
[70] M. Wahbah, M. Alhawari, B. Mohammad, H. Saleh, M. Ismail, Characterization of human body-based thermal and vibration energy harvesting for wearable devices. IEEE J. Emer. Select. Topic. Circu. Syst. 4 (2014) 354-363. https://doi.org/10.1109/JETCAS.2014.2337195
[71] M.W. Shafer, E. Garcia, The power and efficiency limits of piezoelectric energy harvesting. J. Vibrat. Acous. 136 (2014) 021007. https://doi.org/10.1115/1.4025996
[72] S.K. Ghosh, D. Mandal, Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring. ACS Sustain. Chem. Eng. 5 (2017) 8836. https://doi.org/10.1021/acssuschemeng.7b01617
[73] S. Li, M. Alam, R. U. Ahmed, H. Zhong, Ultrasound-driven piezoelectric current activates spinal cord neurocircuits and restores locomotion in rats with spinal cord injury. Bioelectron Med., 2020, https://doi.org/10.1186/s42234-020-00048-2. https://doi.org/10.1186/s42234-020-00048-2
[74] J. Kim, A.S. Campbell, B.E.F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37 (2019) 389-406. https://doi.org/10.1038/s41587-019-0045-y
[75] D. Rodrigues, A.I. Barbosa, R. Rebelo, I.K. Kwon, R.L. Reis, V.M. Correlo, Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. Biosensors 10 (2020) 79. https://doi.org/10.3390/bios10070079
[76] S. Sharafkhani, M. Kokabi, Ultrathin-shell PVDF/CNT nanocomposite aligned hollow fibers as a sensor/actuator single element. Comp. Sci. Technol. 200 (2020) 108425. https://doi.org/10.1016/j.compscitech.2020.108425
[77] N. Bourasseau, E. Moulin, C. Delebarre, P. Bonniau, Radome health monitoring with Lambwaves: experimental approach. NDT E. Int. 33 (2000) 393-400. https://doi.org/10.1016/S0963-8695(00)00007-4
[78] T. Ghosh, T. Kundu, P. Karpur, Efficient use of lamb modes for detecting defects in large plates. Ultrasonics 36 (1998) 791-801. https://doi.org/10.1016/S0041-624X(98)00012-2
[79] K.S. Tan, N. Guo, B.S. Wong, C.G. Tui, Comparison of lamb waves and pulse echo in detection of near-surface defects in laminate plates. NDT E. Int. 28 (1995) 215-223. https://doi.org/10.1016/0963-8695(95)00023-Q
[80] O.S. Salawu, Detection of structural damage through changes in frequency: A review. Eng. Struct. 19 (1997) 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
[81] C.K. Lee, F.C. Moon, Laminated piezopolymer plates for torsion and bending sensors and actuators. J. Acoust. Soc. Am. 85 (1989) 2432-2439. https://doi.org/10.1121/1.397792
[82] C.T. Sun, N.C. Cheng, Piezoelectric waves on a layered cylinder. J. Appl. Phys. 45 (1974) 4288-4294. https://doi.org/10.1063/1.1663048
[83] Q. Wang, S.T. Quek, Enhancing flutter and buckling capacity of column by piezoelectric layers. Int. J. Solids Struct. 39 (2002) 4167-4180. https://doi.org/10.1016/S0020-7683(02)00334-7
[84] W. H. Duan, Q. Wang, S. T. Quek, Applications of piezoelectric materials in structural health monitoring and repair: selected research examples. Mater. 3 (2010) 5169-5194. https://doi.org/10.3390/ma3125169
[85] Q. Wang, S.T. Quek, Repair of delaminated beams via piezoelectric patches. Smart Mater. Struct. 13 (2004)1222-1229. https://doi.org/10.1088/0964-1726/13/5/026