Piezoelectric Materials-based Nanogenerators


Piezoelectric Materials-based Nanogenerators

Ritamay Bhunia, Do Hwan Kim

With the progression of human civilization, the growing demands of smart electronics devices have compelled us to think about some effective alternative energy sources which can deliver the required power to these devices. Currently, flexible, lightweight, sustainable power sources can be alternatives to fulfill the demands. Piezoelectric nanogenerators are favorable candidates because they can be integrated with these portable personal electronic devices. A remarkable advancement in nanogenerators has been achieved in the synthesis process, energy conversion performance, environmental pollution due to conventional chemical batteries, and adaptability. This chapter presents the possibilities and implementation of piezoelectric materials for nanogenerator fabrication. This chapter would help the readers to get a clear perception of this topic.

Piezoelectric, Nanogenerator, Sensor, Ceramic, ZnO, Polymer, Composite, PVDF, Cellulose

Published online 2022/09/01, 54 pages

Citation: Ritamay Bhunia, Do Hwan Kim, Piezoelectric Materials-based Nanogenerators, Materials Research Foundations, Vol. 131, pp 61-116, 2022

DOI: https://doi.org/10.21741/9781644902097-3

Part of the book on Advanced Functional Piezoelectric Materials and Applications

[1] W.D. Grossmann, I. Grossmann, K. Steininger, Indicators To Determine Winning Renewable Energy Technologies with an Application to Photovoltaics, Environ. Sci. Technol. 44 (2010) 4849-4855. https://doi.org/10.1021/es903434q
[2] T. Wu, Y. Song, Z. Shi, D. Liu, S. Chen, C. Xiong, Q. Yang, High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting, Nano Energy 80 (2021) 105541. https://doi.org/10.1016/j.nanoen.2020.105541
[3] Z.L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science 312 (2006) 242. https://doi.org/10.1126/science.1124005
[4] L. Gu, J. Liu, N. Cui, Q. Xu, T. Du, L. Zhang, Z. Wang, C. Long, Y. Qin, Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode, Nat. Commun. 11 (2020) 1030. https://doi.org/10.1038/s41467-020-14846-4
[5] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy 55 (2019) 288-304. https://doi.org/10.1016/j.nanoen.2018.10.053
[6] F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Flexible triboelectric generator, Nano Energy 1 (2012) 328-334. https://doi.org/10.1016/j.nanoen.2012.01.004
[7] B. Fatma, S. Gupta, C. Chatterjee, R. Bhunia, V. Verma, A. Garg, Triboelectric generators made of mechanically robust PVDF films as self-powered autonomous sensors for wireless transmission based remote security systems, J. Mater. Chem. A 8 (2020) 15023-15033. https://doi.org/10.1039/D0TA04716C
[8] Y. Yang, W. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z.L. Wang, Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy, Nano Lett. 12 (2012) 2833-2838. https://doi.org/10.1021/nl3003039
[9] H. Xue, Q. Yang, D. Wang, W. Luo, W. Wang, M. Lin, D. Liang, Q. Luo, A wearable pyroelectric nanogenerator and self-powered breathing sensor, Nano Energy 38 (2017) 147-154. https://doi.org/10.1016/j.nanoen.2017.05.056
[10] J. Ryu, J.-E. Kang, Y. Zhou, S.-Y. Choi, W.-H. Yoon, D.-S. Park, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, J.-W. Kim, Y.-D. Kim, S. Priya, S.Y. Lee, S. Jeong, D.-Y. Jeong, Ubiquitous magneto-mechano-electric generator, Energy Environ. Sci. 8 (2015) 2402-2408. https://doi.org/10.1039/C5EE00414D
[11] M.G. Kang, R. Sriramdas, H. Lee, J. Chun, D. Maurya, G.T. Hwang, J. Ryu, S. Priya, High Power Magnetic Field Energy Harvesting through Amplified Magneto-Mechanical Vibration, Adv. Energy Mater. 8 (2018) 1703313. https://doi.org/10.1002/aenm.201703313
[12] J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian, J. Zhu, J. Mu, X. Hou, W. Geng, J. Cho, J. Han, X. Chou, C. Xue, Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system, Nano Energy 43 (2018) 326-339. https://doi.org/10.1016/j.nanoen.2017.11.039
[13] T. Quan, X. Wang, Z.L. Wang, Y. Yang, Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch, ACS Nano 9 (2015) 12301-12310. https://doi.org/10.1021/acsnano.5b05598
[14] Y. Zhao, P. Deng, Y. Nie, P. Wang, Y. Zhang, L. Xing, X. Xue, Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor, Biosens. Bioelectron. 57 (2014) 269-275. https://doi.org/10.1016/j.bios.2014.02.022
[15] Z. Wen, Q. Shen, X. Sun, Nanogenerators for Self-Powered Gas Sensing, Nano-Micro Lett. 9 (2017) 45. https://doi.org/10.1007/s40820-017-0146-4
[16] M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, Z.L. Wang, Self-powered environmental sensor system driven by nanogenerators, Energy Environ. Sci. 4 (2011) 3359-3363. https://doi.org/10.1039/c1ee01558c
[17] Z.-H. Lin, G. Cheng, Y. Yang, Y.S. Zhou, S. Lee, Z.L. Wang, Triboelectric Nanogenerator as an Active UV Photodetector, Adv. Funct. Mater. 24 (2014) 2810-2816. https://doi.org/10.1002/adfm.201302838
[18] Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics, Research 2020 (2020) 8710686. https://doi.org/10.34133/2020/8710686
[19] Z.L. Wang, Entropy theory of distributed energy for internet of things, Nano Energy 58 (2019) 669-672. https://doi.org/10.1016/j.nanoen.2019.02.012
[20] J. Curie, P. Curie, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. Minéral. 3-4 (1880) 90-93. https://doi.org/10.3406/bulmi.1880.1564
[21] G. Lippmann, Principe de la conservation de l’elecricit’e, Ann de Chemie e de Physique (5 series) 24 (1881) 145.
[22] P. Curie, J. Curie, Contractions et dilatations produites par des tensions ‘electriques dans les cristaux h’emi’edres ‘a faces inclin’ees., Comptes Rendus (France) 93 (1881) 1137-1140. https://doi.org/10.3406/bulmi.1880.1564
[23] D. Fang, J. Liu, Basic Equations of Piezoelectric Materials, in: D. Fang, J. Liu (Eds.), Fracture mechanics of piezoelectric and ferroelectric solids, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp 77-95. https://doi.org/10.1007/978-3-642-30087-5_4
[24] A.L. Kholkin, N.A. Pertsev, A.V. Goltsev, Piezoelectricity and Crystal Symmetry, in: A. Safari, E.K. Akdoğan (Eds.), Piezoelectric and Acoustic Materials for Transducer Applications, Springer US, Boston, MA, 2008, pp 17-38. https://doi.org/10.1007/978-0-387-76540-2_2
[25] Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators, Mater. Today 20 (2017) 74-82. https://doi.org/10.1016/j.mattod.2016.12.001
[26] C. Opoku, A.S. Dahiya, C. Oshman, F. Cayrel, G. Poulin-Vittrant, D. Alquier, N. Camara, Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures, Physics Procedia 70 (2015) 858-862. https://doi.org/10.1016/j.phpro.2015.08.176
[27] M.K. Gupta, J.-H. Lee, K.Y. Lee, S.-W. Kim, Two-Dimensional Vanadium-Doped ZnO Nanosheet-Based Flexible Direct Current Nanogenerator, ACS Nano 7 (2013) 8932-8939. https://doi.org/10.1021/nn403428m
[28] W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, T. Jing, Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices, ACS Nano 6 (2012) 6231-6235. https://doi.org/10.1021/nn3016585
[29] X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers, Nano Lett. 10 (2010) 2133-2137. https://doi.org/10.1021/nl100812k
[30] K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates, Nano Lett. 10 (2010) 4939-4943. https://doi.org/10.1021/nl102959k
[31] S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung, J. Nah, Hemispherically Aggregated BaTiO3 Nanoparticle Composite Thin Film for High-Performance Flexible Piezoelectric Nanogenerator, ACS Nano 8 (2014) 2766-2773. https://doi.org/10.1021/nn406481k
[32] J.H. Jung, C.-Y. Chen, B.K. Yun, N. Lee, Y. Zhou, W. Jo, L.-J. Chou, Z.L. Wang, Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors, Nanotechnol. 23 (2012) 375401. https://doi.org/10.1088/0957-4484/23/37/375401
[33] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater. 13 (2001) 113-116. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
[34] X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts, Science 303 (2004) 1348-51. https://doi.org/10.1126/science.1092356
[35] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science 291 (2001) 1947-9. https://doi.org/10.1126/science.1058120
[36] X.Y. Kong, Z.L. Wang, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, Nano Lett. 3 (2003) 1625-1631. https://doi.org/10.1021/nl034463p
[37] X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science 316 (2007) 102. https://doi.org/10.1126/science.1139366
[38] P.X. Gao, J. Song, J. Liu, Z.L. Wang, Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices, Adv. Mater. 19 (2007) 67-72. https://doi.org/10.1002/adma.200601162
[39] R. Yang, Y. Qin, L. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires, Nat. Nanotechnol. 4 (2009) 34-39. https://doi.org/10.1038/nnano.2008.314
[40] G. Zhu, A.C. Wang, Y. Liu, Y. Zhou, Z.L. Wang, Functional Electrical Stimulation by Nanogenerator with 58 V Output Voltage, Nano Lett. 12 (2012) 3086-3090. https://doi.org/10.1021/nl300972f
[41] S.N. Cha, J.S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.W. Kim, J.M. Kim, Sound-driven piezoelectric nanowire-based nanogenerators, Adv. Mater. 22 (2010) 4726-30. https://doi.org/10.1002/adma.201001169
[42] M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S.Y. Lee, J.M. Kim, S.-W. Kim, Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods, Adv. Mater. 21 (2009) 2185-2189. https://doi.org/10.1002/adma.200803605
[43] D. Choi, M.-Y. Choi, H.-J. Shin, S.-M. Yoon, J.-S. Seo, J.-Y. Choi, S.Y. Lee, J.M. Kim, S.-W. Kim, Nanoscale Networked Single-Walled Carbon-Nanotube Electrodes for Transparent Flexible Nanogenerators, J. Phys. Chem. C 114 (2010) 1379-1384. https://doi.org/10.1021/jp909713c
[44] D. Choi, M.-Y. Choi, W.M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.-M. Yoon, S.J. Chae, Y.H. Lee, S.-W. Kim, J.-Y. Choi, S.Y. Lee, J.M. Kim, Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes, Adv. Mater. 22 (2010) 2187-2192. https://doi.org/10.1002/adma.200903815
[45] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices, Nat. Nanotechnol. 5 (2010) 366-373. https://doi.org/10.1038/nnano.2010.46
[46] G. Zhu, R. Yang, S. Wang, Z.L. Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, Nano Lett. 10 (2010) 3151-3155. https://doi.org/10.1021/nl101973h
[47] M.A. Johar, A. Waseem, M.A. Hassan, J.-H. Kang, J.-S. Ha, J.K. Lee, S.-W. Ryu, Facile growth of high aspect ratio c-axis GaN nanowires and their application as flexible p-n NiO/GaN piezoelectric nanogenerators, Acta Mater. 161 (2018) 237-245. https://doi.org/10.1016/j.actamat.2018.09.030
[48] B. Kumar, D.-H. Lee, S.-H. Kim, B. Yang, S. Maeng, S.-W. Kim, General Route to Single-Crystalline SnO Nanosheets on Arbitrary Substrates, J. Phys. Chem. C 114 (2010) 11050-11055. https://doi.org/10.1021/jp101682v
[49] J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science 331 (2011) 568. https://doi.org/10.1126/science.1194975
[50] K.-H. Kim, B. Kumar, K.Y. Lee, H.-K. Park, J.-H. Lee, H.H. Lee, H. Jun, D. Lee, S.-W. Kim, Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation, Sci. Rep. 3 (2013) 2017. https://doi.org/10.1038/srep02017
[51] Y. Manjula, R. Rakesh Kumar, P.M. Swarup Raju, G. Anil Kumar, T. Venkatappa Rao, A. Akshaykranth, P. Supraja, Piezoelectric flexible nanogenerator based on ZnO nanosheet networks for mechanical energy harvesting, Chem. Phys. 533 (2020) 110699. https://doi.org/10.1016/j.chemphys.2020.110699
[52] H.-K. Park, K.Y. Lee, J.-S. Seo, J.-A. Jeong, H.-K. Kim, D. Choi, S.-W. Kim, Charge-generating mode control in high-performance transparent flexible piezoelectric nanogenerators, Adv. Funct. Mater. 21 (2011) 1187-1193. https://doi.org/10.1002/adfm.201002099
[53] Y. Gao, Z.L. Wang, Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire, Nano Lett. 9 (2009) 1103-1110. https://doi.org/10.1021/nl803547f
[54] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO Nanowire UV Photodetectors with High Internal Gain, Nano Lett. 7 (2007) 1003-1009. https://doi.org/10.1021/nl070111x
[55] Y. Hu, L. Lin, Y. Zhang, Z.L. Wang, Replacing a Battery by a Nanogenerator with 20 V Output, Adv. Mater. 24 (2012) 110-114. https://doi.org/10.1002/adma.201103727
[56] K.Y. Lee, B. Kumar, J.-S. Seo, K.-H. Kim, J.I. Sohn, S.N. Cha, D. Choi, Z.L. Wang, S.-W. Kim, P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators, Nano Lett. 12 (2012) 1959-1964. https://doi.org/10.1021/nl204440g
[57] T.T. Pham, K.Y. Lee, J.-H. Lee, K.-H. Kim, K.-S. Shin, M.K. Gupta, B. Kumar, S.-W. Kim, Reliable operation of a nanogenerator under ultraviolet light via engineering piezoelectric potential, Energy Environ. Sci. 6 (2013) 841-846. https://doi.org/10.1039/c2ee23980a
[58] J. Shi, M.B. Starr, H. Xiang, Y. Hara, M.A. Anderson, J.-H. Seo, Z. Ma, X. Wang, Interface Engineering by Piezoelectric Potential in ZnO-Based Photoelectrochemical Anode, Nano Lett. 11 (2011) 5587-5593. https://doi.org/10.1021/nl203729j
[59] Y.Q. Chen, X.J. Zheng, X. Feng, The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning, Nanotechnol. 21 (2009) 055708. https://doi.org/10.1088/0957-4484/21/5/055708
[60] P.V. Radovanovic, D.R. Gamelin, High-Temperature Ferromagnetism in Ni2+-Doped ZnO Aggregates Prepared from Colloidal Diluted Magnetic Semiconductor Quantum Dots, Phys. Rev. Lett. 91 (2003) 157202. https://doi.org/10.1103/PhysRevLett.91.157202
[61] D.A. Schwartz, K.R. Kittilstved, D.R. Gamelin, Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots, Appl. Phys. Lett. 85 (2004) 1395-1397. https://doi.org/10.1063/1.1785872
[62] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater. 4 (2005) 42-46. https://doi.org/10.1038/nmat1284
[63] M.-H. Zhao, Z.-L. Wang, S.X. Mao, Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope, Nano Lett. 4 (2004) 587-590. https://doi.org/10.1021/nl035198a
[64] Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films, Appl. Phys. Lett. 92 (2008) 012907. https://doi.org/10.1063/1.2830663
[65] N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Y-doped ZnO nanosheets: Gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator, Ceram. Int. 44 (2018) 8582-8590. https://doi.org/10.1016/j.ceramint.2018.02.066
[66] C. Jin, N. Hao, Z. Xu, I. Trase, Y. Nie, L. Dong, A. Closson, Z. Chen, J.X.J. Zhang, Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films, Sens. Actuators A 305 (2020) 111912. https://doi.org/10.1016/j.sna.2020.111912
[67] H. Sun, H. Tian, Y. Yang, D. Xie, Y.-C. Zhang, X. Liu, S. Ma, H.-M. Zhao, T.-L. Ren, A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube, Nanoscale 5 (2013) 6117-6123. https://doi.org/10.1039/c3nr00866e
[68] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rödel, BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives, Appl. Phys. Rev. 4 (2017) 041305. https://doi.org/10.1063/1.4990046
[69] L.A. Shuvalov, Symmetry aspects of ferroelectricity, J. Phys. Soc. Jpn. 28 (Suppl.) (1970) 38.
[70] F. Jona, G. Shiarane, Ferroelectric Crystals, Dover Publications, 1993, p 402.
[71] R.E. Cohen, H. Krakauer, Lattice dynamics and origin of ferroelectricity in BaTiO3: Linearized-augmented-plane-wave total-energy calculations, Phys. Rev. B: Condens. Matter 42 (1990) 6416-6423. https://doi.org/10.1103/PhysRevB.42.6416
[72] M. Kimura, A. Ando, Y. Sakabe, 2 – Lead zirconate titanate-based piezo-ceramics, in: K. Uchino (Ed.), Advanced Piezoelectric Materials, Woodhead Publishing, 2010, pp. 89-110. https://doi.org/10.1533/9781845699758.1.89
[73] A. Koka, Z. Zhou, H.A. Sodano, Vertically aligned BaTiO3 nanowire arrays for energy harvesting, Energy Environ. Sci. 7 (2014) 288-296. https://doi.org/10.1039/C3EE42540A
[74] R. Kiran, A. Kumar, R. Kumar, R. Vaish, Effect of poling orientation on piezoelectric materials operating in longitudinal mode, Mater. Res. Express 6 (2019) 065711. https://doi.org/10.1088/2053-1591/ab0fd0
[75] J. Yan, Y.G. Jeong, High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes, ACS Appl. Mater. Interfaces 8 (2016) 15700-15709. https://doi.org/10.1021/acsami.6b02177
[76] E.L. Tsege, G.H. Kim, V. Annapureddy, B. Kim, H.-K. Kim, Y.-H. Hwang, A flexible lead-free piezoelectric nanogenerator based on vertically aligned BaTiO3 nanotube arrays on a Ti-mesh substrate, RSC Adv. 6 (2016) 81426-81435. https://doi.org/10.1039/C6RA13482C
[77] Z. Zhou, X. Du, Z. Zhang, J. Luo, S. Niu, D. Shen, Y. Wang, H. Yang, Q. Zhang, S. Dong, Interface modulated 0-D piezoceramic nanoparticles/PDMS based piezoelectric composites for highly efficient energy harvesting application, Nano Energy 82 (2021) 105709. https://doi.org/10.1016/j.nanoen.2020.105709
[78] B. Chen, H. Li, W. Tian, C. Zhou, PZT Based Piezoelectric Sensor for Structural Monitoring, J. Electron. Mater. 48 (2019) 2916-2923. https://doi.org/10.1007/s11664-019-07034-8
[79] G.L. Smith, J.S. Pulskamp, L.M. Sanchez, D.M. Potrepka, R.M. Proie, T.G. Ivanov, R.Q. Rudy, W.D. Nothwang, S.S. Bedair, C.D. Meyer, R.G. Polcawich, PZT-Based Piezoelectric MEMS Technology, J. Am. Ceram. Soc. 95 (2012) 1777-1792. https://doi.org/10.1111/j.1551-2916.2012.05155.x
[80] X. Niu, W. Jia, S. Qian, J. Zhu, J. Zhang, X. Hou, J. Mu, W. Geng, J. Cho, J. He, X. Chou, High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator, ACS Sustainable Chem. Eng. 7 (2019) 979-985. https://doi.org/10.1021/acssuschemeng.8b04627
[81] G. Shirane, A. Takeda, Phase Transitions in Solid Solutions of PbZrO3 and PbTiO3 (I) Small Concentrations of PbTiO3, J. Phys. Soc. Jpn. 7 (1952) 5-11. https://doi.org/10.1143/JPSJ.7.5
[82] G. Shirane, K. Suzuki, A. Takeda, Phase Transitions in Solid Solutions of PbZrO3 and PbTiO3 (II) X-ray Study, J. Phys. Soc. Jpn. 7 (1952) 12-18. https://doi.org/10.1143/JPSJ.7.12
[83] G. Shirane, K. Suzuki, Crystal structure of Pb(Zr-Ti)O3, J. Phys. Soc. Jpn. 7 (1952) 333-333. https://doi.org/10.1143/JPSJ.7.333
[84] E. Sawaguchi, Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3, J. Phys. Soc. Jpn. 8 (1953) 615-629. https://doi.org/10.1143/JPSJ.8.615
[85] B. Jaffe, R.S. Roth, S. Marzullo, Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics, J. Appl. Phys. 25 (1954) 809-810. https://doi.org/10.1063/1.1721741
[86] R.E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature 358 (1992) 136-138. https://doi.org/10.1038/358136a0
[87] Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, M. Sakata, Evidence for Pb-O covalency in tetragonal PbTiO3, Phys. Rev. Lett. 87 (2001) 217601. https://doi.org/10.1103/PhysRevLett.87.217601
[88] H. Lee, H. Kim, D.Y. Kim, Y. Seo, Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers, ACS Omega 4 (2019) 2610-2617. https://doi.org/10.1021/acsomega.8b03325
[89] N. Cui, W. Wu, Y. Zhao, S. Bai, L. Meng, Y. Qin, Z.L. Wang, Magnetic Force Driven Nanogenerators as a Noncontact Energy Harvester and Sensor, Nano Lett. 12 (2012) 3701-3705. https://doi.org/10.1021/nl301490q
[90] L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, Y. Qin, Z.L. Wang, Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode, Nano Lett. 13 (2013) 91-94. https://doi.org/10.1021/nl303539c
[91] R. Bhunia, S. Gupta, B. Fatma, Prateek, R.K. Gupta, A. Garg, Milli-Watt Power Harvesting from Dual Triboelectric and Piezoelectric Effects of Multifunctional Green and Robust Reduced Graphene Oxide/P(VDF-TrFE) Composite Flexible Films, ACS Appl. Mater. Interfaces 11 (2019) 38177-38189. https://doi.org/10.1021/acsami.9b13360
[92] X. Zhou, K. Parida, O. Halevi, Y. Liu, J. Xiong, S. Magdassi, P.S. Lee, All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure, Nano Energy 72 (2020) 104676. https://doi.org/10.1016/j.nanoen.2020.104676
[93] R. Bhunia, S. Das, S. Dalui, S. Hussain, R. Paul, R. Bhar, A.K. Pal, Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester, Appl. Phys. A 122 (2016) 637. https://doi.org/10.1007/s00339-016-0161-1
[94] S. Gong, B. Zhang, J. Zhang, Z.L. Wang, K. Ren, Biocompatible poly(lactic acid)-based hybrid piezoelectric and electret nanogenerator for electronic skin applications, Adv. Funct. Mater. 30 (2020) 1908724. https://doi.org/10.1002/adfm.201908724
[95] L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy 78 (2020) 105251. https://doi.org/10.1016/j.nanoen.2020.105251
[96] H. Kawai, The Piezoelectricity of Poly (vinylidene Fluoride), Jpn. J. Appl. Phys. 8 (1969) 975-976. https://doi.org/10.1143/JJAP.8.975
[97] W.P. Mason, Piezoelectricity, its history and applications, J. Acoust. Soc. Am. 70 (1981) 1561-1566. https://doi.org/10.1121/1.387221
[98] K. Al Abdullah, M.A. Batal, R. Hamdan, T. Khalil, J. Zaraket, M. Aillerie, C. Salame, The Enhancement of PVDF Pyroelectricity (Pyroelectric Coefficient and Dipole Moment) by Inclusions, Energy Procedia 119 (2017) 545-555. https://doi.org/10.1016/j.egypro.2017.07.074
[99] S.N. Fedosov, H. von Seggern, Pyroelectricity in polyvinylidene fluoride: Influence of polarization and charge, J. Appl. Phys. 103 (2008) 014105. https://doi.org/10.1063/1.2824940
[100] R. Gregorio, R.C. CapitãO, Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride), J. Mater. Sci. 35 (2000) 299-306. https://doi.org/10.1023/A:1004737000016
[101] V. Sencadas, R. Gregorio, S. Lanceros-Méndez, α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch, J. Macromol. Sci. Part B Phys. 48 (2009) 514-525. https://doi.org/10.1080/00222340902837527
[102] A. Itoh, Y. Takahashi, T. Furukawa, H. Yajima, Solid-state calculations of poly(vinylidene fluoride) using the hybrid DFT method: spontaneous polarization of polymorphs, Polym. J. 46 (2014) 207-211. https://doi.org/10.1038/pj.2013.96
[103] G. Zhu, Z. Zeng, L. Zhang, X. Yan, Piezoelectricity in β-phase PVDF crystals: A molecular simulation study, Comput. Mater. Sci. 44 (2008) 224-229. https://doi.org/10.1016/j.commatsci.2008.03.016
[104] S. Qin, X. Zhang, Z. Yu, F. Zhao, Polarization study of poly(vinylidene fluoride) films under cyclic electric fields, Polym. Eng. Sci. 60 (2020) 645-656. https://doi.org/10.1002/pen.25323
[105] S.K. Mahadeva, J. Berring, K. Walus, B. Stoeber, Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling, J. Phys. D: Appl. Phys. 46 (2013) 285305. https://doi.org/10.1088/0022-3727/46/28/285305
[106] A. Salimi, A.A. Yousefi, Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films, Polym. Test. 22 (2003) 699-704. https://doi.org/10.1016/S0142-9418(03)00003-5
[107] L. Li, M. Zhang, M. Rong, W. Ruan, Studies on the transformation process of PVDF from α to β phase by stretching, RSC Adv. 4 (2014) 3938-3943. https://doi.org/10.1039/C3RA45134H
[108] H. Zhang, H. Lu, Z. Liu, L. Li, Preparation of High-Performance Polyvinylidene Fluoride Films by the Combination of Simultaneous Biaxial Stretching and Solid-State Shear Milling Technologies, Ind. Eng. Chem. Res. 59 (2020) 18539-18548. https://doi.org/10.1021/acs.iecr.0c03383
[109] S. Gupta, R. Bhunia, B. Fatma, D. Maurya, D. Singh, Prateek, R. Gupta, S. Priya, R.K. Gupta, A. Garg, Multifunctional and Flexible Polymeric Nanocomposite Films with Improved Ferroelectric and Piezoelectric Properties for Energy Generation Devices, ACS Appl. Energy Mater. 2 (2019) 6364-6374. https://doi.org/10.1021/acsaem.9b01000
[110] D. Singh, Deepak, A. Garg, An efficient route to fabricate fatigue-free P(VDF-TrFE) capacitors with enhanced piezoelectric and ferroelectric properties and excellent thermal stability for sensing and memory applications, Phys. Chem. Chem. Phys. 19 (2017) 7743-7750. https://doi.org/10.1039/C7CP00275K
[111] L. Jiang, H. Xie, Y. Hou, S. Wang, Y. Xia, Y. Li, G.-H. Hu, Q. Yang, C. Xiong, Z. Gao, Enhanced piezoelectricity of a PVDF-based nanocomposite utilizing high-yield dispersions of exfoliated few-layer MoS2, Ceram. Int. 45 (2019) 11347-11352. https://doi.org/10.1016/j.ceramint.2019.02.213
[112] C.-T. Pan, S.-Y. Wang, C.-K. Yen, A. Kumar, S.-W. Kuo, J.-L. Zheng, Z.-H. Wen, R. Singh, S.P. Singh, M.T. Khan, R.K. Chaudhary, X. Dai, A. Chandra Kaushik, D.-Q. Wei, Y.-L. Shiue, W.-H. Chang, Polyvinylidene Fluoride-Added Ceramic Powder Composite Near-Field Electrospinned Piezoelectric Fiber-Based Low-Frequency Dynamic Sensors, ACS Omega 5 (2020) 17090-17101. https://doi.org/10.1021/acsomega.0c00805
[113] H. Parangusan, D. Ponnamma, M.A.A. AlMaadeed, Toward High Power Generating Piezoelectric Nanofibers: Influence of Particle Size and Surface Electrostatic Interaction of Ce-Fe2O3 and Ce-Co3O4 on PVDF, ACS Omega 4 (2019) 6312-6323. https://doi.org/10.1021/acsomega.9b00243
[114] J.R. Gregorio, M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride), J. Polym. Sci., Part B: Polym. Phys. 32 (1994) 859-870. https://doi.org/10.1002/polb.1994.090320509
[115] V. Sencadas, R. Gregorio Filho, S. Lanceros-Mendez, Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase, J. Non-Cryst. Solids 352 (2006) 2226-2229. https://doi.org/10.1016/j.jnoncrysol.2006.02.052
[116] P. Ueberschlag, PVDF piezoelectric polymer, Sens. Rev. 21 (2001) 118-125. https://doi.org/10.1108/02602280110388315
[117] Z. Pi, J. Zhang, C. Wen, Z.-b. Zhang, D. Wu, Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film, Nano Energy 7 (2014) 33-41. https://doi.org/10.1016/j.nanoen.2014.04.016
[118] A.J. Lovinger, Ferroelectric polymers, Science 220 (1983) 1115-1121. https://doi.org/10.1126/science.220.4602.1115
[119] S. Khadtare, E.J. Ko, Y.H. Kim, H.S. Lee, D.K. Moon, A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system, Sens. Actuators A 299 (2019) 111575. https://doi.org/10.1016/j.sna.2019.111575
[120] L. Persano, C. Dagdeviren, Y.W. Su, Y.H. Zhang, S. Girardo, D. Pisignano, Y.G. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene), Nat. Commun. 4 (2013) 1633. https://doi.org/10.1038/ncomms2639
[121] K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor, ACS Appl. Polym. Mater. 2 (2020) 862-878. https://doi.org/10.1021/acsapm.9b00846
[122] R.K. Singh, S.W. Lye, J. Miao, Measurement of impact characteristics in a string using electrospun PVDF nanofibers strain sensors, Sens. Actuators A 303 (2020) 111841. https://doi.org/10.1016/j.sna.2020.111841
[123] M. García-Iglesias, B.F.M. de Waal, A.V. Gorbunov, A.R.A. Palmans, M. Kemerink, E.W. Meijer, A Versatile Method for the Preparation of Ferroelectric Supramolecular Materials via Radical End-Functionalization of Vinylidene Fluoride Oligomers, J. Am. Chem. Soc. 138 (2016) 6217-6223. https://doi.org/10.1021/jacs.6b01908
[124] S. Dey, M. Purahmad, S.S. Ray, A.L. Yarin, M. Dutta, Investigation of PVDF-TrFE nanofibers for energy harvesting, 2012 IEEE Nanotech. Mater. Dev. Conf. (NMDC2012), 2012 21-24.
[125] S. You, L. Zhang, J. Gui, H. Cui, S. Guo, A Flexible Piezoelectric Nanogenerator Based on Aligned P(VDF-TrFE) Nanofibers, Micromachines 10 (2019) 302. https://doi.org/10.3390/mi10050302
[126] M.S. Singhvi, S.S. Zinjarde, D.V. Gokhale, Polylactic acid: synthesis and biomedical applications, J. Appl. Microbiol. 127 (2019) 1612-1626. https://doi.org/10.1111/jam.14290
[127] E.J. Curry, K. Ke, M.T. Chorsi, K.S. Wrobel, A.N. Miller, A. Patel, I. Kim, J. Feng, L. Yue, Q. Wu, C.-L. Kuo, K.W.H. Lo, C.T. Laurencin, H. Ilies, P.K. Purohit, T.D. Nguyen, Biodegradable piezoelectric force sensor, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 909. https://doi.org/10.1073/pnas.1710874115
[128] Y. Tajitsu, Development of environmentally friendly piezoelectric polymer film actuator having multilayer structure, Jpn. J. Appl. Phys. 55 (2016) 04EA07. https://doi.org/10.7567/JJAP.55.04EA07
[129] M. Ando, H. Kawamura, H. Kitada, Y. Sekimoto, T. Inoue, Y. Tajitsu, Pressure-Sensitive Touch Panel Based on Piezoelectric Poly(L-lactic acid) Film, Jpn. J. Appl. Phys. 52 (2013) 09KD17. https://doi.org/10.7567/JJAP.52.09KD17
[130] M. Varga, J. Morvan, N. Diorio, E. Buyuktanir, J. Harden, J.L. West, A. Jákli, Direct piezoelectric responses of soft composite fiber mats, Appl. Phys. Lett. 102 (2013) 153903. https://doi.org/10.1063/1.4802593
[131] C. Zhao, J. Zhang, Z.L. Wang, K. Ren, A Poly(l-Lactic Acid) Polymer-Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications, Adv. Sustainable Syst. 1 (2017) 1700068. https://doi.org/10.1002/adsu.201700068
[132] J. Zhang, S. Gong, X. Li, J. Liang, Z.L. Wang, K. Ren, A Wind-Driven Poly(tetrafluoroethylene) Electret and Polylactide Polymer-Based Hybrid Nanogenerator for Self-Powered Temperature Detection System, Adv. Sustainable Syst. 5 (2021) 2000192. https://doi.org/10.1002/adsu.202000192
[133] B. Medronho, A. Romano, M.G. Miguel, L. Stigsson, B. Lindman, Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions, Cellulose 19 (2012) 581-587. https://doi.org/10.1007/s10570-011-9644-6
[134] S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels 3 (2010) 10. https://doi.org/10.1186/1754-6834-3-10
[135] A.C. O’Sullivan, Cellulose: the structure slowly unravels, Cellulose 4 (1997) 173-207. https://doi.org/10.1023/A:1018431705579
[136] E. Fukada, Piezoelectricity of Wood, J. Phys. Soc. Jpn. 10 (1955) 149-154. https://doi.org/10.1143/JPSJ.10.149
[137] I. Chae, C.K. Jeong, Z. Ounaies, S.H. Kim, Review on Electromechanical Coupling Properties of Biomaterials, ACS Appl. Bio Mater. 1 (2018) 936-953. https://doi.org/10.1021/acsabm.8b00309
[138] N. Sriplai, R. Mangayil, A. Pammo, V. Santala, S. Tuukkanen, S. Pinitsoontorn, Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe2O4 nanoparticles, Carbohydr. Polym. 231 (2020) 115730. https://doi.org/10.1016/j.carbpol.2019.115730
[139] S. Yoon, J.W. Kim, H.C. Kim, J. Kim, Effect of Process Orientation on the Mechanical Behavior and Piezoelectricity of Electroactive Paper, Mater. 13 (2020) 204. https://doi.org/10.3390/ma13010204
[140] M.M. Alam, D. Mandal, Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility, ACS Appl. Mater. Interfaces 8 (2016) 1555-1558. https://doi.org/10.1021/acsami.5b08168
[141] Q. Zheng, H. Zhang, H. Mi, Z. Cai, Z. Ma, S. Gong, High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films, Nano Energy 26 (2016) 504-512. https://doi.org/10.1016/j.nanoen.2016.06.009
[142] B. Baytekin, H.T. Baytekin, B.A. Grzybowski, Retrieving and converting energy from polymers: deployable technologies and emerging concepts, Energy Environ. Sci. 6 (2013) 3467-3482. https://doi.org/10.1039/c3ee41360h
[143] H.Y. Choi, Y.G. Jeong, Microstructures and piezoelectric performance of eco-friendly composite films based on nanocellulose and barium titanate nanoparticle, Compos. B. Eng. 168 (2019) 58-65. https://doi.org/10.1016/j.compositesb.2018.12.072
[144] M. Pusty, P.M. Shirage, Gold nanoparticle-cellulose/PDMS nanocomposite: a flexible dielectric material for harvesting mechanical energy, RSC Adv. 10 (2020) 10097-10112. https://doi.org/10.1039/C9RA10811D
[145] S. Bauer, Piezo-, pyro- and ferroelectrets: Soft transducer materials for electromechanical energy conversion, IEEE Trans. Dielectr. Electr. Insul. 13 (2006) 953-962. https://doi.org/10.1109/TDEI.2006.247819
[146] T. Greeshma, R. Balaji, S. Jayakumar, PVDF Phase Formation and Its Influence on Electrical and Structural Properties of PZT-PVDF Composites, Ferroelectr. Lett. 40 (2013) 41-55. https://doi.org/10.1080/07315171.2013.814460
[147] S.F. Mendes, C.M. Costa, C. Caparros, V. Sencadas, S. Lanceros-Méndez, Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites, J. Mater. Sci. 47 (2012) 1378-1388. https://doi.org/10.1007/s10853-011-5916-7
[148] M. Pusty, L. Sinha, P.M. Shirage, A flexible self-poled piezoelectric nanogenerator based on a rGO-Ag/PVDF nanocomposite, New J. Chem. 43 (2019) 284-294. https://doi.org/10.1039/C8NJ04751K
[149] R. Bhunia, R. Dey, S. Das, S. Hussain, R. Bhar, A. Kumar Pal, Enhanced piezo-electric property induced in graphene oxide/polyvinylidene fluoride composite flexible thin films, Polym. Compos. 39 (2018) 4205-4216. https://doi.org/10.1002/pc.24493
[150] Y. Ahn, J.Y. Lim, S.M. Hong, J. Lee, J. Ha, H.J. Choi, Y. Seo, Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride), J. Phys. Chem. C 117 (2013) 11791-11799. https://doi.org/10.1021/jp4011026
[151] V. Bhavanasi, V. Kumar, K. Parida, J. Wang, P.S. Lee, Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide, ACS Appl. Mater. Interfaces 8 (2016) 521-529. https://doi.org/10.1021/acsami.5b09502
[152] V. Jella, S. Ippili, J.-H. Eom, J. Choi, S.-G. Yoon, Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films, Nano Energy 53 (2018) 46-56. https://doi.org/10.1016/j.nanoen.2018.08.033
[153] A. Sultana, P. Sadhukhan, M.M. Alam, S. Das, T.R. Middya, D. Mandal, Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector, ACS Appl. Mater. Interfaces 10 (2018) 4121-4130. https://doi.org/10.1021/acsami.7b17408
[154] N. Chamankar, R. Khajavi, A.A. Yousefi, A. Rashidi, F. Golestanifard, A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications, Ceram. Int. 46 (2020) 19669-19681. https://doi.org/10.1016/j.ceramint.2020.03.210
[155] U. Yaqoob, R.M. Habibur, M. Sheeraz, H.C. Kim, Realization of self-poled, high performance, flexible piezoelectric energy harvester by employing PDMS-rGO as sandwich layer between P(VDF-TrFE)-PMN-PT composite sheets, Compos. B. Eng. 159 (2019) 259-268. https://doi.org/10.1016/j.compositesb.2018.09.102
[156] S. Ippili, V. Jella, J.-H. Eom, J. Kim, S. Hong, J.-S. Choi, V.-D. Tran, N. Van Hieu, Y.-J. Kim, H.-J. Kim, S.-G. Yoon, An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDF composite films, Nano Energy 57 (2019) 911-923. https://doi.org/10.1016/j.nanoen.2019.01.005
[157] A.D. Hussein, R.S. Sabry, O. Abdul Azeez Dakhil, R. Bagherzadeh, Effect of Adding BaTiO3 to PVDF as Nano Generator, J. Phys. Conf. Ser. 1294 (2019) 022012. https://doi.org/10.1088/1742-6596/1294/2/022012
[158] H.H. Singh, M. Singh, K. Gangwal, M. Faraz, N. Khare, BaTiO3-PVDF composite film for piezoelectric nanogenerator, AIP Conf. Proc. 2265 (2020) 030642. https://doi.org/10.1063/5.0017115
[159] R. Naik, S.R. T, Self-powered flexible piezoelectric nanogenerator made of poly (vinylidene fluoride)/Zirconium oxide nanocomposite, Mater. Res. Express 6 (2019) 115330. https://doi.org/10.1088/2053-1591/ab49b3
[160] K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics, ACS Appl. Mater. Interfaces 10 (2018) 44018-44032. https://doi.org/10.1021/acsami.8b15320
[161] C. Kumar, A. Gaur, S. Tiwari, A. Biswas, S.K. Rai, P. Maiti, Bio-waste polymer hybrid as induced piezoelectric material with high energy harvesting efficiency, Compos. Commun. 11 (2019) 56-61. https://doi.org/10.1016/j.coco.2018.11.004
[162] A. Gaur, S. Tiwari, C. Kumar, P. Maiti, Retracted Article: A bio-based piezoelectric nanogenerator for mechanical energy harvesting using nanohybrid of poly(vinylidene fluoride), Nanoscale Adv. 1 (2019) 3200-3211. https://doi.org/10.1039/C9NA00214F
[163] A. Sultana, S.K. Ghosh, M.M. Alam, P. Sadhukhan, K. Roy, M. Xie, C.R. Bowen, S. Sarkar, S. Das, T.R. Middya, D. Mandal, Methylammonium Lead Iodide Incorporated Poly(vinylidene fluoride) Nanofibers for Flexible Piezoelectric-Pyroelectric Nanogenerator, ACS Appl. Mater. Interfaces 11 (2019) 27279-27287. https://doi.org/10.1021/acsami.9b04812
[164] R. Bhunia, B. Ghosh, D. Ghosh, S. Hussain, R. Bhar, A.K. Pal, Free-standing nanocrystalline-Cadmium sulfide/Polyvinylidene fluoride composite thin film: synthesis and characterization, J. Polym. Res. 22 (2015) 71. https://doi.org/10.1007/s10965-015-0712-8
[165] G. Tian, W. Deng, Y. Gao, D. Xiong, C. Yan, X. He, T. Yang, L. Jin, X. Chu, H. Zhang, W. Yan, W. Yang, Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training, Nano Energy 59 (2019) 574-581. https://doi.org/10.1016/j.nanoen.2019.03.013
[166] S. Xu, Y.-w. Yeh, G. Poirier, M.C. McAlpine, R.A. Register, N. Yao, Flexible Piezoelectric PMN-PT Nanowire-Based Nanocomposite and Device, Nano Lett. 13 (2013) 2393-2398. https://doi.org/10.1021/nl400169t
[167] K. Liu, H.J. Choi, B.K. Kim, D.B. Kim, C.S. Han, S.W. Kim, H.B. Kang, J.-W. Park, Y.S. Cho, Piezoelectric energy harvesting and charging performance of Pb(Zn1/3Nb2/3)O3-Pb(Zr0.5Ti0.5)O3 nanoparticle-embedded P(VDF-TrFE) nanofiber composite sheets, Compos. Sci. Technol. 168 (2018) 296-302. https://doi.org/10.1016/j.compscitech.2018.10.012
[168] J. Liu, B. Yang, L. Lu, X. Wang, X. Li, X. Chen, J. Liu, Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers, Sens. Actuators A 303 (2020) 111796. https://doi.org/10.1016/j.sna.2019.111796
[169] J. Li, C. Zhao, K. Xia, X. Liu, D. Li, J. Han, Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification, Appl. Surf. Sci. 463 (2019) 626-634. https://doi.org/10.1016/j.apsusc.2018.08.266
[170] S. Bairagi, S.W. Ali, Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator, Soft Matter 16 (2020) 4876-4886. https://doi.org/10.1039/D0SM00438C
[171] N.A. Shepelin, P.C. Sherrell, E. Goudeli, E.N. Skountzos, V.C. Lussini, G.W. Dicinoski, J.G. Shapter, A.V. Ellis, Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating, Energy Environ. Sci. 13 (2020) 868-883. https://doi.org/10.1039/C9EE03059J
[172] Z.W. Ouyang, E.C. Chen, T.M. Wu, Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites, Mater. Chem. Phys. 149 (2015) 172-178. https://doi.org/10.1016/j.matchemphys.2014.10.003
[173] W.C. Gan, W.H.A. Majid, Effect of TiO2on enhanced pyroelectric activity of PVDF composite, Smart Mater. Struct. 23 (2014) 045026. https://doi.org/10.1088/0964-1726/23/4/045026
[174] L. Yang, T. Qiu, M. Shen, H. He, H. Huang, Metal-organic frameworks Co3[Co(CN)6]2: A promising candidate for dramatically reinforcing the piezoelectric activity of PVDF, Compos. Sci. Technol. 196 (2020) 108232. https://doi.org/10.1016/j.compscitech.2020.108232
[175] B. Jaleh, A. Jabbari, Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films, Appl. Surf. Sci. 320 (2014) 339-347. https://doi.org/10.1016/j.apsusc.2014.09.030
[176] S.K. Karan, R. Bera, S. Paria, A.K. Das, S. Maiti, A. Maitra, B.B. Khatua, An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency, Adv. Energy Mater. 6 (2016) 1601016. https://doi.org/10.1002/aenm.201601016
[177] R.S. Sabry, A.D. Hussein, PVDF:ZnO/BaTiO3 as high out-put piezoelectric nanogenerator, Polym. Test. 79 (2019) 106001. https://doi.org/10.1016/j.polymertesting.2019.106001
[178] B. Saravanakumar, R. Mohan, K. Thiyagarajan, S.-J. Kim, Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting, RSC Adv. 3 (2013) 16646-16656. https://doi.org/10.1039/c3ra40447a
[179] H. Kim, S.M. Kim, H. Son, H. Kim, B. Park, J. Ku, J.I. Sohn, K. Im, J.E. Jang, J.-J. Park, O. Kim, S. Cha, Y.J. Park, Enhancement of piezoelectricity via electrostatic effects on a textile platform, Energy Environ. Sci. 5 (2012) 8932-8936. https://doi.org/10.1039/c2ee22744d
[180] C.K. Jeong, K.-I. Park, J. Ryu, G.-T. Hwang, K.J. Lee, Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler, Adv. Funct. Mater. 24 (2014) 2620-2629. https://doi.org/10.1002/adfm.201303484
[181] S. Xu, B.J. Hansen, Z.L. Wang, Piezoelectric-nanowire-enabled power source for driving wireless microelectronics, Nat. Commun. 1 (2010) 93. https://doi.org/10.1038/ncomms1098
[182] C.K. Jeong, I. Kim, K.-I. Park, M.H. Oh, H. Paik, G.-T. Hwang, K. No, Y.S. Nam, K.J. Lee, Virus-Directed Design of a Flexible BaTiO3 Nanogenerator, ACS Nano 7 (2013) 11016-11025. https://doi.org/10.1021/nn404659d
[183] K.-I. Park, S.B. Bae, S.H. Yang, H.I. Lee, K. Lee, S.J. Lee, Lead-free BaTiO3 nanowires-based flexible nanocomposite generator, Nanoscale 6 (2014) 8962-8968. https://doi.org/10.1039/C4NR02246G
[184] S. Lee, J. Lee, W. Ko, S. Cha, J. Sohn, J. Kim, J. Park, Y. Park, J. Hong, Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications, Nanoscale 5 (2013) 9609-9614. https://doi.org/10.1039/c3nr03402j
[185] Y. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Self-Powered System with Wireless Data Transmission, Nano Lett. 11 (2011) 2572-2577. https://doi.org/10.1021/nl201505c
[186] X. Xue, S. Wang, W. Guo, Y. Zhang, Z.L. Wang, Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell, Nano Lett. 12 (2012) 5048-5054. https://doi.org/10.1021/nl302879t
[187] H. He, Y. Fu, T. Zhao, X. Gao, L. Xing, Y. Zhang, X. Xue, All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics, Nano Energy 39 (2017) 590-600. https://doi.org/10.1016/j.nanoen.2017.07.033
[188] X. Xue, P. Deng, B. He, Y. Nie, L. Xing, Y. Zhang, Z.L. Wang, Flexible Self-Charging Power Cell for One-Step Energy Conversion and Storage, Adv. Energy Mater. 4 (2014) 1301329. https://doi.org/10.1002/aenm.201301329
[189] P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, S. Das, Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability, Nano Energy 44 (2018) 456-467. https://doi.org/10.1016/j.nanoen.2017.11.065
[190] A. Rasheed, W. He, Y. Qian, H. Park, D.J. Kang, Flexible Supercapacitor-Type Rectifier-free Self-Charging Power Unit Based on a Multifunctional Polyvinylidene Fluoride-ZnO-rGO Piezoelectric Matrix, ACS Appl. Mater. Interfaces 12 (2020) 20891-20900. https://doi.org/10.1021/acsami.9b22362
[191] Y. Zhang, Y. Zhang, X. Xue, C. Cui, B. He, Y. Nie, P. Deng, Z. Lin Wang, PVDF-PZT nanocomposite film based self-charging power cell, Nanotechnol. 25 (2014) 105401. https://doi.org/10.1088/0957-4484/25/10/105401
[192] P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S. Sahoo, S. Manoharan, S.-J. Kim, A High Efficacy Self-Charging MoSe2 Solid-State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte, Adv. Mater. Interfaces 5 (2018) 1800055. https://doi.org/10.1002/admi.201800055
[193] G. Wei, Z. Wang, R. Zhu, H. Kimura, PVDF/BCT-BZT Nanocomposite Film for a Piezo-Driven Self-Charging Power Cell, J. Electrochem. Soc. 165 (2018) A1238-A1246. https://doi.org/10.1149/2.0401807jes
[194] A. Maitra, S.K. Karan, S. Paria, A.K. Das, R. Bera, L. Halder, S.K. Si, A. Bera, B.B. Khatua, Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator, Nano Energy 40 (2017) 633-645. https://doi.org/10.1016/j.nanoen.2017.08.057
[195] D. Zhou, F. Wang, X. Zhao, J. Yang, H. Lu, L.-Y. Lin, L.-Z. Fan, Self-Chargeable Flexible Solid-State Supercapacitors for Wearable Electronics, ACS Appl. Mater. Interfaces 12 (2020) 44883-44891. https://doi.org/10.1021/acsami.0c14426
[196] K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo, S.-J. Kim, Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy, Nat. Commun. 11 (2020) 2351. https://doi.org/10.1038/s41467-020-15808-6
[197] N. Wang, W. Dou, S. Hao, Y. Cheng, D. Zhou, X. Huang, C. Jiang, X. Cao, Tactile sensor from self-chargeable piezoelectric supercapacitor, Nano Energy 56 (2019) 868-874. https://doi.org/10.1016/j.nanoen.2018.11.065
[198] D. Zhou, L. Xue, L. Wang, N. Wang, W.-M. Lau, X. Cao, Self-chargeable sodium-ion battery for soft electronics, Nano Energy 61 (2019) 435-441. https://doi.org/10.1016/j.nanoen.2019.04.068
[199] R. Song, H. Jin, X. Li, L. Fei, Y. Zhao, H. Huang, H. Lai-Wa Chan, Y. Wang, Y. Chai, A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes, J. Mater. Chem. A 3 (2015) 14963-14970. https://doi.org/10.1039/C5TA03349G
[200] K. Parida, V. Bhavanasi, V. Kumar, J. Wang, P.S. Lee, Fast charging self-powered electric double layer capacitor, J. Power Sources 342 (2017) 70-78. https://doi.org/10.1016/j.jpowsour.2016.11.083
[201] S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S. Manoharan, S.-J. Kim, High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes, J. Mater. Chem. A 7 (2019) 21693-21703. https://doi.org/10.1039/C9TA06245A
[202] D. Zhou, N. Wang, T. Yang, L. Wang, X. Cao, Z.L. Wang, A piezoelectric nanogenerator promotes highly stretchable and self-chargeable supercapacitors, Mater. Horiz. 7 (2020) 2158-2167. https://doi.org/10.1039/D0MH00610F
[203] Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems, Angew. Chem. Int. Ed. 51 (2012) 11700-21. https://doi.org/10.1002/anie.201201656
[204] A. Pfenniger, D. Obrist, A. Stahel, V.M. Koch, R. Vogel, Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator, Med. Biol. Eng. Comput. 51 (2013) 741-55. https://doi.org/10.1007/s11517-012-0989-2
[205] L. Junrui, L. Wei-Hsin, Impedance matching for improving piezoelectric energy harvesting systems, SPIE Conf. Proc. Proc. 2010.
[206] N. Wang, R. Daniels, L. Connelly, M. Sotzing, C. Wu, R. Gerhard, G.A. Sotzing, Y. Cao, All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks, Small 17 (2021) 2103161. https://doi.org/10.1002/smll.202103161
[207] X. Ma, X. Zhang, Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure, Smart Mater. Struct. 26 (2017) 085001. https://doi.org/10.1088/1361-665X/aa75f5
[208] Z. Luo, J. Shi, S.P. Beeby, Novel thick-foam ferroelectret with engineered voids for energy harvesting applications, J. Phys. Conf. Ser. 773 (2016) 012030. https://doi.org/10.1088/1742-6596/773/1/012030
[209] P. Adhikary, S. Garain, D. Mandal, The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester, Phys. Chem. Chem. Phys. 17 (2015) 7275-7281. https://doi.org/10.1039/C4CP05513F
[210] B. Mahanty, S.K. Ghosh, S. Garain, D. Mandal, An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer, Mater. Chem. Phys. 186 (2017) 327-332. https://doi.org/10.1016/j.matchemphys.2016.11.003
[211] X. Zhang, L. Wu, G.M. Sessler, Energy scavenging from vibration with two-layer laminated fluoroethylenepropylene piezoelectret films, Joint IEEE Intern. Symp. on the Applications of Ferroelectric (ISAF) 2015, pp 24-27. https://doi.org/10.1109/ISAF.2015.7172659
[212] Y. Wang, L. Wu, X. Zhang, Energy harvesting from vibration using flexible floroethylenepropylene piezoelectret films with cross-tunnel structure, IEEE Trans. Dielectr. Electr. Insul. 22 (2015) 1349-1354. https://doi.org/10.1109/TDEI.2015.7116321
[213] G.M. Sessler, P. Pondrom, X. Zhang, Stacked and folded piezoelectrets for vibration-based energy harvesting, Phase Transitions 89 (2016) 667-677. https://doi.org/10.1080/01411594.2016.1202408
[214] A. Kachroudi, S. Basrour, L. Rufer, F. Jomni, Air-spaced PDMS piezo-electret cantilevers for vibration energy harvesting, J. Phys. Conf. Ser. 773 (2016) 012072. https://doi.org/10.1088/1742-6596/773/1/012072
[215] J. Zhong, Q. Zhong, G. Chen, B. Hu, S. Zhao, X. Li, N. Wu, W. Li, H. Yu, J. Zhou, Surface charge self-recovering electret film for wearable energy conversion in a harsh environment, Energy Environ. Sci. 9 (2016) 3085-3091. https://doi.org/10.1039/C6EE02135B
[216] Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong, X. Wang, Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems, Adv. Energy Mater. 4 (2014) 1301624. https://doi.org/10.1002/aenm.201301624
[217] M. Choi, G. Murillo, S. Hwang, J.W. Kim, J.H. Jung, C.-Y. Chen, M. Lee, Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator, Nano Energy 33 (2017) 462-468. https://doi.org/10.1016/j.nanoen.2017.01.062
[218] B. Dudem, D.H. Kim, L.K. Bharat, J.S. Yu, Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting, Appl. Energy 230 (2018) 865-874. https://doi.org/10.1016/j.apenergy.2018.09.009
[219] L. Zhang, J. Gui, Z. Wu, R. Li, Y. Wang, Z. Gong, X. Zhao, C. Sun, S. Guo, Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes, Nano Energy 65 (2019) 103924. https://doi.org/10.1016/j.nanoen.2019.103924
[220] X. Guan, B. Xu, J. Gong, Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors, Nano Energy 70 (2020) 104516. https://doi.org/10.1016/j.nanoen.2020.104516
[221] J. Liu, B. Yang, J. Liu, Development of environmental-friendly BZT-BCT/P(VDF-TrFE) composite film for piezoelectric generator, J. Mater. Sci.: Mater. Electron. 29 (2018) 17764-17770. https://doi.org/10.1007/s10854-018-9883-5