Analysis of Neural Network Structure for Implementation of the Prescriptive Maintenance Strategy

Analysis of Neural Network Structure for Implementation of the Prescriptive Maintenance Strategy

FILO Grzegorz and LEMPA Paweł

download PDF

Abstract. This paper provides an initial analysis of neural network implementation possibilities in practical implementations of the prescriptive maintenance strategy. The main issues covered are the preparation and processing of input data, the choice of artificial neural network architecture and the models of neurons used in each layer. The methods of categorisation and normalisation within each distinguished category were proposed in input data. Based on the normalisation results, it was suggested to use specific neuron activation functions. As part of the network structure, the applied solutions were analysed, including the number of neuron layers used and the number of neurons in each layer. In further work, the proposed structures of neural networks may undergo a process of supervised or partially supervised training to verify the accuracy and confidence level of the results they generate.

Artificial Neural Network, Neuron Model, Layer Model, Prescriptive Maintenance, Input Signal Normalisation

Published online 7/20/2022, 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: FILO Grzegorz and LEMPA Paweł, Analysis of Neural Network Structure for Implementation of the Prescriptive Maintenance Strategy, Materials Research Proceedings, Vol. 24, pp 273-280, 2022


The article was published as article 40 of the book Terotechnology XII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] K. Lepenioti, A. Bousdekis, D. Apostolou, G. Mentzas. Prescriptive analytics: Literature review and research challenges, International Journal of Information Management, 50 (2020), 57-70.
[2] F. Biebla, R. Glawara, A. Jalalic, F. Ansaria, B. Haslhoferc, P. de Boerd, W. Sihn. A conceptual model to enable prescriptive maintenance for etching equipment in semiconductor manufacturing, Procedia CIRP 88 (2020) 64-69.
[3] R. Glawar, F. Ansari, C. Kardos, K. Matyas, W. Sihn. Conceptual Design of an Integrated Autonomous Production Control Model in association with a Prescriptive Maintenance Model (PriMa), Procedia CIRP 80 (2019) 482-487.
[4] T. Nemeth, F. Ansari, W. Sihn, B. Haslhofer, A. Schindler. PriMa-X: A reference model for realizing prescriptive maintenance and assessing its maturity enhanced by machine learning, Procedia CIRP 72 (2018) 1039–1044.
[5] K. Matyas, T. Nemeth, K. Kovacs, R. Glawar. A procedural approach for realizing prescriptive maintenance planning in manufacturing industries, CIRP Ann. Manuf. Technol 66 (2017) 461–464.
[6] F. Wang, Z. Chen, C. Wu, Y. Yang. Prediction on sound insulation properties of ultrafine glass wool mats with artificial neural networks, Applied Acoustics 146 (2019) 164–171.
[7] I. Lazakis, Y. Raptodimos, T. Verelas. Predicting ship machinery system condition through analytical reliability tools and artificial neural networks, Ocean Engineering 152 (2018) 404–415.
[8] E.A. Roehl Jr, D. A. Ladner, R. C. Daamen, J. B. Cook, J. Safarik, D. W. Philips Jr, P. Xie. Modeling fouling in a large RO system with artificial neural networks, Journal of Membrane Science 552 (2018) 95-106.
[9] J. Pietraszek, A. Gadek-Moszczak, N. Radek. The estimation of accuracy for the neural network approximation in the case of sintered metal properties. Studies in Computational Intelligence 513 (2014) 125-134.
[10] A. Szczotok, J. Pietraszek, N. Radek. Metallographic Study and Repeatability Analysis of γ’ Phase Precipitates in Cored, Thin-Walled Castings Made from IN713C Superalloy. Archives of Metallurgy and Materials 62 (2017) 595-601.
[11] J. Pietraszek, A. Szczotok, N. Radek. The fixed-effects analysis of the relation between SDAS and carbides for the airfoil blade traces. Archives of Metallurgy and Materials 62 (2017) 235-239.
[12] N. Radek, J. Pietraszek, A. Goroshko. The impact of laser welding parameters on the mechanical properties of the weld, AIP Conf. Proc. 2017 (2018) art.20025.
[13] N. Radek, J. Pietraszek, A. Gadek-Moszczak, Ł.J. Orman, A. Szczotok. The morphology and mechanical properties of ESD coatings before and after laser beam machining, Materials 13 (2020) art. 2331.
[14] N. Radek, J. Konstanty, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, D. Przestacki. The effect of laser beam processing on the properties of WC-Co coatings deposited on steel. Materials 14 (2021) art. 538.
[15] M. Kekez, L. Radziszewski, A. Sapietova. Fuel type recognition by classifiers developed with computational intelligence methods using combustion pressure data and the crankshaft angle at which heat release reaches its maximum, Procedia Engineering 136 (2016) 353-358.
[16] Ł.J. Orman Ł.J., N. Radek, J. Pietraszek, M. Szczepaniak. Analysis of enhanced pool boiling heat transfer on laser-textured surfaces. Energies 13 (2020) art. 2700.
[17] R. Ulewicz, D. Siwiec, A. Pacana, M. Tutak, J. Brodny. Multi-criteria method for the selection of renewable energy sources in the polish industrial sector, Energies 14 (2021) art.2386.
[18] M. Zmindak, L. Radziszewski, Z. Pelagic, M. Falat. FEM/BEM techniques for modelling of local fields in contact mechanics, Communications – Scientific Letters of the University of Zilina 17 (2015) 37-46.
[19] A. Kubecki, C. Śliwiński, J. Śliwiński, I. Lubach, L. Bogdan, W. Maliszewski. Assessment of the technical condition of mines with mechanical fuses, Technical Transactions 118 (2021) art. e2021025.
[20] G. Majewski, M. Telejko, Ł.J. Orman. Preliminary results of thermal comfort analysis in selected buildings, E3S Web of Conf. 17 (2017) art. 56.
[21] M. Dobrzański. The influence of water price and the number of residents on the economic efficiency of water recovery from grey water, Technical Transactions 118 (2021) art. e2021001.
[22] A. Bakowski, V. Dekŷŝ, L. Radziszewski, Z. Skrobacki, P. Świetlik. Estimation of uncertainty and variability of urban traffic volume measurements in Kielce, 11th Int. Sci. Tech. Conf. Automotive Safety (2018) 1-8.
[23] A. Bakowski, V. Dekýš, L. Radziszewski, Z. Skrobacki. Validation of traffic noise models, AIP Conf. Proc. 2077 (2019) art.020005.
[24] B. Szczodrowska, R. Mazurczuk. A review of modern materials used in military camouflage within the radar frequency range, Technical Transactions 118 (2021) art.e2021003.
[25] M. Morawski,T. Talarczyk, M. Malec. Depth control for biomimetic and hybrid unmanned underwater vehicles, Technical Transactions 118 (2021) art. e2021024.
[26] J. Pietraszek, R. Dwornicka, A. Szczotok. The bootstrap approach to the statistical significance of parameters in the fixed effects model. ECCOMAS 2016 – Proc. 7th European Congress on Computational Methods in Applied Sciences and Engineering 3, 6061-6068.
[27] J. Pietraszek, N. Radek, A.V. Goroshko. Challenges for the DOE methodology related to the introduction of Industry 4.0. Production Engineering Archives 26 (2020) 190-194.
[28] H. Danielewski, A. Skrzypczyk, W. Zowczak, D. Gontarski, L. Płonecki, H. Wiśniewski, D. Soboń, A. Kalinowski, G. Bracha, K. Borkowski. Numerical analysis of laser-welded flange pipe joints in lap and fillet configurations, Technical Transactions 118 (2021) art. e2021030.
[29] J. Pietraszek, E. Skrzypczak-Pietraszek. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction. Solid State Phenom. 235 (2015) 1-8.