Analysis of the Causes of the Non-Conformity of the Bearing Shell Casting Used on Rail Vehicles

Analysis of the Causes of the Non-Conformity of the Bearing Shell Casting Used on Rail Vehicles

PACANA Andrzej, CZERWIŃSKA Karolina and DWORNICKA Renata

download PDF

Abstract. Continuous improvement of the quality of manufactured products and monitoring of the production process is the key to the success of every company. Skillful use of available technologies and quality management instruments makes it possible to eliminate casting incompatibilities and prevent their recurrence in the future. The aim of the article was to analyze the types of defects occurring in castings, locate the areas with the most frequent occurrence of defects and identify the reasons for the presence of defects in castings of bearing housings used in railway vehicles. The paper presents the usefulness of a combination of quality management instruments for diagnosing material discontinuities in the analyzed castings.

Keywords
Quality Control, Quality Management Tools, Pareto-Lorenza Diagram, Casting Defects

Published online 7/20/2022, 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PACANA Andrzej, CZERWIŃSKA Karolina and DWORNICKA Renata, Analysis of the Causes of the Non-Conformity of the Bearing Shell Casting Used on Rail Vehicles, Materials Research Proceedings, Vol. 24, pp 196-203, 2022

DOI: https://doi.org/10.21741/9781644902059-29

The article was published as article 29 of the book Terotechnology XII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Łuszczak, R. Dańko. Stan zagadnienia w zakresie odlewania dużych odlewów strukturalnych ze stopów aluminium. Archives of Foundry Engineering 13 (2013) 113 -116.
[2] J. Pezda. Zastosowanie metody atnd do oceny właściwości mechanicznych okołoeutektycznego stopu AlSi12Cu2(Fe), Inżynieria Maszyn 22 (2017) 47-57.
[3] S. Kozakowski. Badanie odlewów – technologie odlewnicze, typowe dla nich wady i metody ich ujawniania. Biuro Gamma, Warszawa, 2001.
[4] K.E. Oczoś, A. Kawalec. Kształtowanie metali lekkich, PWN, Warszawa, 2012.
[5] Ł. Poloczek, A. Kiełbus. Wpływ czynników technologicznych na jakość odlewów ze stopów aluminium. Zarządzanie Przedsiębiorstwem 19 (2016) 14-19.
[6] Z. Falęcki. Analiza wad odlewów, AGH, Kraków, 1997.
[7] W. Łybacki, K. Zawadzka. Assistance of casting defects diagnosin by means of quality management tools, Archiwum Technologii Maszyn i Automatyzacji 28 (2008) 89-101.
[8] A. Pacana, L. Bednárová, J. Pacana. Wpływ wybranych czynników procesu produkcji folii orientowanej na jej odporność na przebicie, Przemysł Chemiczny 93 (2014) 2263-2264.
[9] A. Pacana, A. Gazda, D. Malindzak, R. Stefko. Study on improving the quality of stretch film by Shainin method, Przemysł Chemiczny 93 (2014) 243-245. https://doi.org/10.12916/przemchem.2014.243
[10] J.Tybulczuk, J. Seredyński, M. Szanda. Zarządzanie jakością w procesie produkcyjnym odlewów ze stopów Al-Si o specyficznych wymaganiach mechanicznych w „INNOWACJA” Sp. z o.o. w Nowej Dębie, Archiwum Odlewnictwa, Komisja Odlewnictwa Polskiej Akademii Nauk Oddział w Katowicach R. 6, nr 18/1, 2006.
[11] Thoni Alutec Ltd.. Unpublished papers, Stalowa Wola, 2021.
[12] PN-EN 1706:2011 (2011). Aluminum and aluminum alloys Castings. Chemical composition and mechanical properties, Warszawa: PKN
[13] Y. Briol. Effect of solution heat treatment on the age hardening capacity of dendritic and globular AlSi7Mg0.6 alloys, Int. J. Mater. Res. 101 (2010) 439-444.
[14] A. Pacana, K. Czerwinska, L. Bednarova. Comprehensive improvement of the surface quality of the diesel engine piston. Metalurgija 58 (2019) 329-332.
[15] A. Salomon, C. Voigt, O. Fabrichnaya, C. Aneziris, D. Rafaja. Formation of Corundum, Magnesium Titanate, and Titanium(III) Oxide at the Interface between Rutile and Molten Al or AlSi7Mg0.6 Alloy, Advanced Engineering Materials 19 (2017) art. 1700106. https://doi.org/10.1002/adem.201700106
[16] Q. Yang, C. Xia, Y. Deng, X. Li, H. Wang. Microstructure and mechanical properties of AlSi7Mg0.6 aluminum alloy fabricated by wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT), Materials 12 (2019) art. 2525. https://doi.org/10.3390/ma12162525
[17] G. Ostasz, K. Czerwinska, A. Pacana. Quality management of aluminum pistons with the use of quality control points. Management Systems in Production Engineering 28 (2020) 29-33.
[18] P. Cavaliere, E. Cerri, P. Leo. Effect of heat treatment on mechanical properties and fracture behawior of a thixocas A356 aluminum alloy. Mater. Sci. 39 (2004) 1653- 1658. https://doi.org/10.1023/B:JMSC.0000016165.99666.dd.
[19] K. Czerwińska, P. Bełch, M. Hajduk-Stelmachowicz, D. Siwiec, A. Pacana. Doskonalenie procesu grafitowania wyrobów aluminiowych, Przemysł Chemiczny 100 (2021) 1191-1193. https://doi.org/10.15199/62.2021.12.8
[20] L. Hurtalová, J. Belan, E. Tillová, M. Chalupová. Changes in Structural Characteristics of Hypoeutectic Al-Si Cast Alloy after Age Hardening, Medziagotyra 18 (2012) 228-233. https://doi.org/10.5755/j01.ms.18.3.2430
[21] S. Pysz, M. Maj, E. Czekaj. High-Strength Aluminium Alloys and Their Use in Foundry Industry of Nickel Superalloys, Archives of Foundry Engineering 14 (2014) 71-76.
[22] L. Hurtalová, E. Tillová, M. Chalupová. The structure analysis of secondary (Recycled) AlSi9Cu3 cast alloy with and without heat treatment, Engineering Transactions 61 (2013) 197-218.
[23] M.G. Mueller, M. Fornabaio, G. Zagar, A. Mortensen. Microscopic strength of silicon particles in an aluminum-silicon alloy, Acta Materialia 105 (2016) 165-175. https://doi.org/10.1016/j.actamat.2015.12.006
[24] A. Pacana, D. Siwiec, L. Bednárová. Method of choice: A fluorescent penetrant taking into account sustainability criteria, Sustainability 12 (2020) art. 5854. https://doi.org/10.3390/su12145854
[25] A. Dudek, B. Lisiecka, R. Ulewicz. The effect of alloying method on the structure and properties of sintered stainless steel, Archives of Metallurgy and Materials 62 (2017) 281-287. https://doi.org/10.1515/amm-2017-0042
[26] A. Dudek, M. Klimas. Composites based on titanium alloy Ti-6Al-4V with an addition of inert ceramics and bioactive ceramics for medical applications fabricated by spark plasma sintering (SPS method), Materialwissenschaft und Werkstofftechnik 46 (2015) 237-247. https://doi.org/10.1002/mawe.201500334
[27] J. Bronček, P. Fabian, N. Radek. Tribological research of properties of heat-treated cast irons with globular graphite, Materials Science Forum 818 (2015) 209-212. https://doi.org/10.4028/www.scientific.net/MSF.818.209
[28] I. Miletić, A. Ilić, R.R. Nikolić, R. Ulewicz, L. Ivanović, N. Sczygiol. Analysis of selected properties of welded joints of the HSLA Steels, Materials 13 (2020) art.1301. https://doi.org/10.3390/ma13061301
[29] E. Skrzypczak-Pietraszek. Phytochemistry and biotechnology approaches of the genus Exacum. In: The Gentianaceae – Volume 2: Biotechnology and Applications, 2015, 383-401. https://doi.org/10.1007/978-3-642-54102-5_16
[30] A. Szczotok, N. Radek, R. Dwornicka. Effect of the induction hardening on microstructures of the selected steels. METAL 2018 – 27th Int. Conf. Metall. Mater. (2018), Ostrava, Tanger 1264-1269.
[31] N. Radek, J. Pietraszek, A. Gadek-Moszczak, Ł.J. Orman, A. Szczotok. The morphology and mechanical properties of ESD coatings before and after laser beam machining, Materials 13 (2020) art. 2331. https://doi.org/10.3390/ma13102331
[32] Ł.J. Orman Ł.J., N. Radek, J. Pietraszek, M. Szczepaniak. Analysis of enhanced pool boiling heat transfer on laser-textured surfaces. Energies 13 (2020) art. 2700. https://doi.org/10.3390/en13112700
[33] N. Radek, J. Konstanty, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, D. Przestacki. The effect of laser beam processing on the properties of WC-Co coatings deposited on steel. Materials 14 (2021) art. 538. https://doi.org/10.3390/ma14030538
[34] S. Marković, D. Arsić, R.R. Nikolić, V. Lazić, B. Hadzima, V.P. Milovanović, R. Dwornicka, R. Ulewicz. Exploitation characteristics of teeth flanks of gears regenerated by three hard-facing procedures, Materials 14 (2021) art. 4203. https://doi.org/10.3390/ma14154203
[35] Barucca G. et al. PANDA Phase One: PANDA collaboration. European Physical Journal A 57 (2021) art. 184. https://doi.org/10.1140/epja/s10050-021-00475-y
[36] A. Maszke, R. Dwornicka, R. Ulewicz. Problems in the implementation of the lean concept at a steel works – Case study, MATEC Web of Conf. 183 (2018) art.01014. https://doi.org/10.1051/matecconf/201818301014
[37] T. Styrylska, J. Pietraszek. Numerical modeling of non-steady-state temperature-fields with supplementary data. Zeitschrift für Angewandte Mathematik und Mechanik 72 (1992) T537-T539.
[38] J. Pietraszek. Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator. 6th Int. Conf. on Neural Networks and Soft Computing JUN 11-15, 2002, Springer, 250-255. https://doi.org/10.1007/978-3-7908-1902-1_35
[39] J. Pietraszek, R. Dwornicka, A. Szczotok. The bootstrap approach to the statistical significance of parameters in the fixed effects model. ECCOMAS 2016 – Proc. 7th European Congress on Computational Methods in Applied Sciences and Engineering 3, 6061-6068. https://doi.org/10.7712/100016.2240.9206
[40] G. Filo, J. Fabiś-Domagała, M. Domagała, E. Lisowski, H. Momeni. The idea of fuzzy logic usage in a sheet-based FMEA analysis of mechanical systems, MATEC Web of Conf. 183 (2018) art.3009. https://doi.org/10.1051/matecconf/201818303009
[41] A. Kubecki, C. Śliwiński, J. Śliwiński, I. Lubach, L. Bogdan, W. Maliszewski. Assessment of the technical condition of mines with mechanical fuses, Technical Transactions 118 (2021) art. e2021025. https://doi.org/10.37705/TechTrans/e2021025