The use of Polymer Recyclates in the Technology of Concrete Composites Production

The use of Polymer Recyclates in the Technology of Concrete Composites Production

PIETRZAK Alina

download PDF

Abstract. The paper presents a short literature review related to the possibility of using various types of post-production or post-use waste in concrete technology. The main focus was on polymer waste, namely polyethylene terephthalate, polyethylene and polypropylene, and rubber waste.

Keywords
Concrete, Concrete Composite, Polymer Waste

Published online 7/20/2022, 7 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PIETRZAK Alina, The use of Polymer Recyclates in the Technology of Concrete Composites Production, Materials Research Proceedings, Vol. 24, pp 83-89, 2022

DOI: https://doi.org/10.21741/9781644902059-13

The article was published as article 13 of the book Terotechnology XII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] K. Kishore, N. Gupta. Application of domestic & industrial waste materials in concrete: A review, Materials Todays Proc. 26 (2020) 2926-2931. https://doi.org/10.1016/j.matpr.2020.02.604
[2] Y. Aggarwal, R. Siddique. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates, Constr. Build. Mater. 54 (2014) 210 223.
[3] J. Halbiniak., Projektowanie składu betonowego z dodatkiem popiołów lotnych oraz ich wpływa na tempo przyrostu wytrzymałości, Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2 (2012) 29-36.
[4] J. Jura, M. Ulewicz. Application of fly ash and CRT glass waste in cement mortars. Scientific Review – Engineering and Environmental Sciences 27 (2018) 348-354.
[5] J. Jura. Influence of type of biomass burned on the properties of cement mortar containing the fly ash, Construction of Optimized Energy Potential (CoOEP) 9 (2020) 77-82.
[6] J. Jura, M. Ulewicz. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials 14 (2021) art. 6708. https://doi.org/10.3390/ma14216708
[7] J. Popławski. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential (CoOEP) 9 (2020) 89-96.
[8] A. Pietrzak, The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, Construction of Optimized Energy Potential (CoOEP) 1 (2019) 29–35.
[9] A. Halicka, P. Ogrodnik, B. Zegardli. Using ceramic sanitary ware waste as concrete aggregate, Constr. Build. Mater. 48 (2013) 295–305.
[10] M. Ulewicz, J. Halbiniak. Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochem. Probl. Miner. Process. 52 (2016) 1002−1010.
[11] P. Walczak, J. Małolepszy, M. Reben, K. Rzepa. Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash, Procedia Eng. 108 (2015) 453 – 458.
[12] A. Pietrzak, M. Ulewicz. The Influence of Addition of CRT Glass Cullet on Selected Parameters of Concrete Composites, Earth and Environmental Science, 2nd Int. Conf. Sustainable Energy and Environmental Development (SEED’17), Kraków, Polska 2019.
[13]. S.C. Bostanci,, M. Limbachiya, H. Kew. Portland-composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: engineering and durability properties, Constr. Build. Mater. 128 (2016) 324–340.
[14] S-J. Choi Kim, Y-U., T-G. Oh, B-G. Cho. Compressive Strength, Chloride Ion Penetrability, and Carbonation Characteristic of Concrete with Mixed Slag Aggregate, Materials 13 (2020) art.940. https://doi.org/10.3390/ma13040940
[15] Y. W. Choi, D. J Moon, J. S. Chung, S. K. Cho. Effects of waste PET bottlers aggregate on the properties of concrete, Cem. Concr. Res. 35 (2005) 776–781.
[16] T. Ochi, S. Okubo, K. Fukui. Development of recycled PET fiber and its application as concrete-reinforcing fiber, Cement Concr. Compos. 29 (2007) 448–455.
[17] Y. W. Choi, D. J. Moon, Y. J. Kim, M. Lachemi. Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles, Constr. Build. Mater. 23 (2009) 2829–2835.
[18] R. Silva, J. De Brito, N. Saikia. Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates, Cement Concr. Compos. 35 (2013) 23–31.
[19] N. Saikia, J. de Brito. Waste polyethylene terephthalate as an aggregate in concrete. Mater. Res. 16 (2013) 341–350.
[20] R. Nibudey, P. Nagarnaik, D. Parbat, A. Pande, Strength and fracture properties of post consumed waste plastic fiber reinforced concrete, Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. (IJCSEIERD) 3 (2013) 9–16.
[21] E. Rahmani, M. Dehestani, M. H. A. Beygi, H. Allahyari, I. M. Nikbin. On the mechanical properties of concrete containing waste PET particles, Constr. Build. Mater. 47 (2013) 1302-1308.
[22] F. Fraternali, S. Spadea, V. P. Berardi. Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes, Constr. Build. Mater. 61 (2014 ) 293–302.
[23] I. Borovanska, T. Dobreva, R. Benavente, S. Djoumaliisky, G. Kotzev, Quality assessment of recycled and modified LDPE/PP 404 blends, J. Elastom, Plast. 44 (2012) 479-497
[24] T. Kojnoková, L. Markovičová, F. Nový. The changes of LD-PE films after exposure in different media, Prod. Eng. Arch. 26 (2020) 185-189. https://doi.org/10.30657/pea.2020.26.32
[25] S. Kakooei, H. M. Akil, M. Jamshidi, J. Rouhi. The effects of polypropylene fibers on the properties of reinforced concrete 408 structures, Constr. Build. Mater. 27 (2012) 73–77.
[26] A. Sivakumar, M. Santhanam. A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre 410 reinforced concrete, Cement Concr. Compos. 29 (2007) 575–581.
[27] A. Pietrzak, M. Ulewicz. The impact of the length of polypropylene fibers on selected properties of concrete, Acta Sci. Pol. 412 Architectura 18 (2019) 21-25.
[28] Y. Wang, A.-H. Zureick, B.S. Cho, D. Scott. Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J. Mater. Sci. 29 (1994) 4191-4199.
[29] T. R. Naik, S. S. Singh, C. O. Huber, B. S. Brodersen. Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res. 26 (1996) 1489–1492.
[30] Y. Wang, H. Wu, V. C. Li. Concrete reinforcement with recycled fibers, J. Mater. Civ. Eng. 12 (2000) 314–319.
[31] M. Elzafraney, P. Soroushian, M. Deru. . Development of energy-efficient concrete buildings using recycled plastic aggregates, J. Archit. Eng. 11 (2005) 122–130.
[32] K. Kumar, P. Prakash, Use of waste plastic in cement concrete pavement, Adv. Mater. Res. J. 15 (2006) 15, 1–21.
[33] B. Khadakbhavi, D.V.V. Reddy, D. Ullagaddi. Effect of aspect ratios of waste HDPE fibres on the properties of fibres on fiber reinforced concrete, Res. J. Eng. Technol. 3 (2010) 13–21.
[34] M. Chaudhary, V.Srivastava, V. Agarwal. Effect of waste low density polyethylene on mechanical properties of concrete, J. Acad. Ind. Res. 3 (2014) 123.
[35] A. Sofi. Effect of waste tyre rubber on mechanical and durability properties of concrete – A review, Ain Shams Eng. J. 9 (2018) 2691-2700.
[36] M.M. Balaha, A.A.M. Badawy, M. Hashish. Effect of using ground tire rubber as fine aggregate on the 424 behaviour of concrete mixes, Indian J. Eng. Mater. Sci. 14 (2007) 427-435.
[37] Gesoglu, Mehamet, Guneyisi, Erhan, Strength development and chloride penetration in rubberized concretes with and 426 without silica fume, Mater. Struct. 40 (2007) 953–964.
[38] C. Albano, N. Camacho, J. Reyes, J.L. Feliu, M. Herna´ndez. Influence of scrap rubber to Portland I concrete composites: 428 destructive and non-destructive testing, Compos. Struct. 71 (2005) 439–446.
[39] N. Holmes, K. Dunne, J. O’Donnell. Longitudinal shear resistance of composite slabs containing crumb rubber 430 in concrete toppings, Constr. Build. Mater. 55 (2014) 365–378.
[40] M. Bravo, J. de Brito. Concrete made with used tire aggregate: durability-related performance, J. Clean. Prod. 25 (2012) 42–50.
[41] O. Onuaguluchi, D. K. Panesar. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica 434 fume, J. Clean. Prod. 82 (2014) 125–131.
[42] M.M. Taha, A.S. El-Dieb, M.A. AbdEl-Wahab, M.E. Abdel-Hameed. Mechanical, fracture, and microstructural investigations of rubber concrete, J. Mater. Civ. Eng. ASCE 20 (2008) 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)
[43] Batayneh, K. Malek, Marie, Iqbal, Asi, Ibrahim, Promoting the use of crumb rubber concrete in developing countries, Waste 438 Manage. 28 (2008) 2171–2176.
[44] A. Pietrzak, M. Ulewicz. Properties and Structure of Concretes doped with Production 3 Waste of Thermoplastic Elastomers from the Production of Car 4 Floor Mats, Materials 14 (2021) art.872. https://doi.org/10.3390/ma14040872
[45] S.T. Dziuba, M. Ingaldi. Segragation and recycling of packaging waste by individual consumers in Poland, Int. Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 3 (2015) 545-552.
[46] R. Ulewicz, J. Selejdak, S. Borkowski, M. Jagusiak-Kocik. Process management in the cast iron foundry, METAL 2013 – 22nd Int. Conf. Metallurgy and Materials (2013), Ostrava, Tanger 1926-1931.
[47] A. Pacana, A. Gazda, D. Malindzak, R. Stefko. Study on improving the quality of stretch film by Shainin method, Przemysl Chemiczny 93 (2014) 243-245. https://doi.org/10.12916/przemchem.2014.243