Micro Clay/Nano Clay Polymer Composite Flame Retardant Applications

$30.00

Micro Clay/Nano Clay Polymer Composite Flame Retardant Applications

Momina, Haq Nawaz Bhatti, Amina Khan

The discovery of fire is one of the earliest and most significant achievements of man. However, it is a lethal power that has mostly stayed uncontrollable. Big fires occur practically daily and result in significant loss of life and property. The majority of the contents in the houses are flammable. Clothes, blankets, furniture, paper, synthetic polymeric materials, automobile and plane interiors, etc., all burn when the conditions are favorable. The addition of flame retardant to polymeric materials improves their flame retardancy and thermal stability. In this chapter, we will study the addition of micro clay/ nano clay to improve the flame retardancy of polymeric composites to make them feasible to be used in various potential applications.

Keywords
Fire, Flame Retardant, Polymer, Clay Composite, Applications

Published online , 29 pages

Citation: Momina, Haq Nawaz Bhatti, Amina Khan, Micro Clay/Nano Clay Polymer Composite Flame Retardant Applications, Materials Research Foundations, Vol. 129, pp 79-107, 2022

DOI: https://doi.org/10.21741/9781644902035-4

Part of the book on Advanced Applications of Micro and Nano Clay II

References
[1] A. Gonzalez, A. Dasari, B. Herrero, E. Plancher, J. Santaren, A. Esteban, S.H. Lim, Fire retardancy behavior of PLA based nanocomposites, Polymer Degradation and Stability. 97 (2012) 248-256. https://doi.org/10.1016/j.polymdegradstab.2011.12.021
[2] J. Alongi, F. Bosco, F. Carosio, A. Di Blasio, G. Malucelli, A new era for flame retardant materials?, Materials Today. 17 (2014) 152-153. https://doi.org/10.1016/j.mattod.2014.04.005
[3] K. Babu, G. Renden, R. Afriyie Mensah, N.K. Kim, L. Jiang, Q. Xu, A. Restas, R. Esmaeely Neisiany, M.S. Hedenqvist, M. Försth, A review on the flammability properties of carbon-based polymeric composites: State-of-the-art and future trends, Polymers. 12 (2020) 15-18. https://doi.org/10.3390/polym12071518
[4] W.K. Salih, Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite, Journal of Physics: Conference Series. 1003 (2018). https://doi.org/10.1088/1742-6596/1003/1/012019
[5] H. Yang, B. Yu, X. Xu, S. Bourbigot, H. Wang, P. Song, Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials, Green Chemistry. 22 (2020) 2129-2161. https://doi.org/10.1039/D0GC00449A
[6] J. Troitzsch, Flame Retardants., Kunststoffe – German Plastics. 74 (1984) 60-62.
[7] C. Nithiyapathi, K. Thirunavukkarasu, A. Daniel Das, D. Tamilvendan, Progression in Fire Retardant Properties of Polymer Composites-A Review, IOP Conference Series: Materials Science and Engineering. 1059 (2021). https://doi.org/10.1088/1757-899X/1059/1/012058
[8] S. Giraud, F. Rault, A. Cayla, F. Salaün, History and evolution of fire retardants for textiles. (2016) 15-17.
[9] A.K. Roy Choudhury, Flame- and fire-retardant finishes, in: Principles of Textile Finishing, 2017: pp. 195-244. https://doi.org/10.1016/B978-0-08-100646-7.00008-4
[10] H. Vahabi, F. Laoutid, M. Mehrpouya, M.R. Saeb, P. Dubois, Flame retardant polymer materials: An update and the future for 3D printing developments, Materials Science and Engineering: R: Reports. 144 (2021) 100-604. https://doi.org/10.1016/j.mser.2020.100604
[11] S. Bourbigot, S. Duquesne, Fire retardant polymers: Recent developments and opportunities, Journal of Materials Chemistry. 17 (2007) 2283-2300. https://doi.org/10.1039/b702511d
[12] M. Bar, R. Alagirusamy, A. Das, Flame retardant polymer composites, Fibers and Polymers. 16 (2015) 705-717. https://doi.org/10.1007/s12221-015-0705-6
[13] X.W. Cheng, R.C. Tang, J.P. Guan, S.Q. Zhou, An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach, Progress in Organic Coatings. 141 (2020) 105-539. https://doi.org/10.1016/j.porgcoat.2020.105539
[14] A.R. Horrocks, A. Sitpalan, B.K. Kandola, Design and characterisation of bicomponent polyamide 6 fibres with specific locations of each flame retardant component for enhanced flame retardancy, Polymer Testing. 79 (2019) 10-41. https://doi.org/10.1016/j.polymertesting.2019.106041
[15] Q. Tai, R.K.K. Yuen, L. Song, Y. Hu, A novel polymeric flame retardant and exfoliated clay nanocomposites: Preparation and properties, Chemical Engineering Journal. 183 (2012) 542-549. https://doi.org/10.1016/j.cej.2011.12.095
[16] S. Araby, B. Philips, Q. Meng, J. Ma, T. Laoui, C.H. Wang, Recent advances in carbon-based nanomaterials for flame retardant polymers and composites, Composites Part B: Engineering. (2021) 108-675. https://doi.org/10.1016/j.compositesb.2021.108675
[17] Y.-M. Li, S.-L. Hu, D.-Y. Wang, Polymer-based ceramifiable composites for flame retardant applications: A review, Composites Communications. 21 (2020) 100-405. https://doi.org/10.1016/j.coco.2020.100405
[18] A.Y. Snegirev, M.K. Handawy, V. V Stepanov, V.A. Talalov, Pyrolysis and combustion of polymer mixtures: Exploring additivity of the heat release rate, Polymer Degradation and Stability. 161 (2019) 245-259. https://doi.org/10.1016/j.polymdegradstab.2019.01.037
[19] Z. Xu, W. Xing, Y. Hou, B. Zou, L. Han, W. Hu, Y. Hu, The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite, Combustion and Flame. 226 (2021) 108-116. https://doi.org/10.1016/j.combustflame.2020.11.013
[20] W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants, Progress in Materials Science. 114 (2020) 100687. https://doi.org/10.1016/j.pmatsci.2020.100687
[21] P.J. Allender, Flame retardant polymer aspects of design, Materials and Design. 8 (1987) 160-167. https://doi.org/10.1016/S0261-3069(87)90126-9
[22] A.A. Azeez, K.Y. Rhee, S.J. Park, D. Hui, Epoxy clay nanocomposites – processing, properties and applications: A review, Composites Part B: Engineering. 45 (2013) 308-320. https://doi.org/10.1016/j.compositesb.2012.04.012
[23] R. Babu Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, T.O. Varghese, An Overview of Polymer-Clay Nanocomposites, Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-323-46153-5.00002-1
[24] T.C. Mokhena, M.J. Mochane, J.S. Sefadi, S.V. Motloung, D.M. Andala, Thermal conductivity of graphite-based polymer composites, Impact of Thermal Conductivity on Energy Technologies. (2018) 181. https://doi.org/10.5772/intechopen.75676
[25] S. Ray, S.Y. Quek, A. Easteal, X.D. Chen, The potential use of polymer-clay nanocomposites in food packaging, International Journal of Food Engineering. 2 (2006). https://doi.org/10.2202/1556-3758.1149
[26] F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, L. Su-Yeon, G.-S. Kil, D.-W. Park, B.H. Koo, C.G. Lee, Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method, Thin Solid Films. 519 (2011) 8375-8378. https://doi.org/10.1016/j.tsf.2011.03.090
[27] S. Ray, A.J. Easteal, Advances in polymer-filler composites: Macro to nano, Materials and Manufacturing Processes. 22 (2007) 741-749. https://doi.org/10.1080/10426910701385366
[28] J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Applied Clay Science. 15 (1999) 31-49. https://doi.org/10.1016/S0169-1317(99)00019-8
[29] S.P. da S. Ribeiro, L. dos S. Cescon, R.Q.C.R. Ribeiro, A. Landesmann, L.R. de M. Estevão, R.S.V. Nascimento, Effect of clay minerals structure on the polymer flame retardancy intumescent process, Applied Clay Science. 161 (2018) 301-309. https://doi.org/10.1016/j.clay.2018.04.037
[30] S. Leporatti, Polymer clay nano-composites, Polymers. 11 (2019) 58883. https://doi.org/10.3390/polym11091445
[31] C.M.L. Preston, G. Amarasinghe, J.L. Hopewell, R.A. Shanks, Z. Mathys, Evaluation of polar ethylene copolymers as fire retardant nanocomposite matrices, Polymer Degradation and Stability. 84 (2004) 533-544. https://doi.org/10.1016/j.polymdegradstab.2004.02.004
[32] L. Ahmed, B. Zhang, L.C. Hatanaka, M.S. Mannan, Application of polymer nanocomposites in the flame retardancy study, Journal of Loss Prevention in the Process Industries. 55 (2018) 381-391. https://doi.org/10.1016/j.jlp.2018.07.005
[33] F. Samyn, S. Bourbigot, C. Jama, S. Bellayer, Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphology?, Polymer Degradation and Stability. 93 (2008) 2019-2024. https://doi.org/10.1016/j.polymdegradstab.2008.02.013
[34] O. Bera, B. Pilic, J. Pavlicevic, M. Jovicic, B. Hollo, K.M. Szecsenyi, M. Spirkova, Preparation and thermal properties of polystyrene/silica nanocomposites, Thermochimica Acta. 515 (2011) 1-5. https://doi.org/10.1016/j.tca.2010.12.006
[35] N. Misra, V. Kumar, J. Bahadur, S. Bhattacharya, S. Mazumder, L. Varshney, Layered silicate-polymer nanocomposite coatings via radiation curing process for flame retardant applications, Progress in Organic Coatings. 77 (2014) 1443-1451. https://doi.org/10.1016/j.porgcoat.2014.04.027
[36] P. Wei, S. Bocchini, G. Camino, Nanocomposites combustion peculiarities. A case history: Polylactide-clays, European Polymer Journal. 49 (2013) 932-939. https://doi.org/10.1016/j.eurpolymj.2012.11.010
[37] D. Yi, R. Yang, C.A. Wilkie, Full scale nanocomposites: Clay in fire retardant and polymer, Polymer Degradation and Stability. 105 (2014) 31-41. https://doi.org/10.1016/j.polymdegradstab.2014.03.042
[38] D.O. Castro, Z. Karim, L. Medina, J.O. Häggström, F. Carosio, A. Svedberg, L. Wågberg, D. Söderberg, L.A. Berglund, The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites, Composites Science and Technology. 162 (2018) 215-224. https://doi.org/10.1016/j.compscitech.2018.04.032
[39] J. Zhang, D.D. Jiang, C.A. Wilkie, Fire properties of styrenic polymer-clay nanocomposites based on an oligomerically-modified clay, Polymer Degradation and Stability. 91 (2006) 358-366. https://doi.org/10.1016/j.polymdegradstab.2005.04.040
[40] G.R. Udo wagenknecht, Bernard Kretzchmar, Investigation of Fire Retardant Properties of Polypropylene-Clay-Nanocomposites, 212 (2003) 207-212. https://doi.org/10.1002/masy.200390084
[41] J.D. Swann, Y. Ding, M.B. McKinnon, S.I. Stoliarov, Controlled atmosphere pyrolysis apparatus II (CAPA II): A new tool for analysis of pyrolysis of charring and intumescent polymers, Fire Safety Journal. 91 (2017) 130-139. https://doi.org/10.1016/j.firesaf.2017.03.038
[42] M. Rahman, F. Zahin, M.A.S.R. Saadi, A. Sharif, M.E. Hoque, Surface Modification of Advanced and Polymer Nanocomposites, in: N. Dasgupta, S. Ranjan, E. Lichtfouse (Eds.), Environmental Nanotechnology: Volume 1, Springer International Publishing, Cham, 2018: pp. 187-209. https://doi.org/10.1007/978-3-319-76090-2_6
[43] S. Sinha Ray, Recent Trends and Future Outlooks in the Field of Clay-Containing Polymer Nanocomposites, Macromolecular Chemistry and Physics. 215 (2014). https://doi.org/10.1002/macp.201400069
[44] S. Gul, A. Kausar, B. Muhammad, S. Jabeen, Research Progress on Properties and Applications of Polymer/Clay Nanocomposite, Polymer-Plastics Technology and Engineering. 55 (2016) 684-703. https://doi.org/10.1080/03602559.2015.1098699
[45] S. Chua, R. Fang, Z. Sun, M. Wu, Z. Gu, Y. Wang, J.N. Hart, N. Sharma, F. Li, D. Wang, Hybrid solid polymer electrolytes with two‐dimensional inorganic nanofillers, Chemistry-A European Journal. 24 (2018) 18180-18203. https://doi.org/10.1002/chem.201804781
[46] A. Bhat, S. Budholiya, S.A. Raj, M.T.H. Sultan, D. Hui, A.U.M. Shah, S.N.A. Safri, Review on nanocomposites based on aerospace applications, Nanotechnology Reviews. 10 (2021) 237-253. https://doi.org/10.1515/ntrev-2021-0018
[47] J. Zhu, P. Start, K.A. Mauritz, C.A. Wilkie, Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites, Polymer Degradation and Stability. 77 (2002) 253-258. https://doi.org/10.1016/S0141-3910(02)00056-3
[48] H. Vahabi, M.R. Saeb, K. Formela, J.M.L. Cuesta, Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant, Progress in Organic Coatings. 119 (2018) 8-14. https://doi.org/10.1016/j.porgcoat.2018.02.005
[49] G. Makhlouf, M. Hassan, M. Nour, Y.K. Abdel-Monem, A. Abdelkhalik, Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant, Journal of Thermal Analysis and Calorimetry. 130 (2017) 1031-1041. https://doi.org/10.1007/s10973-017-6418-x
[50] B.K. Kim, J.W. Seo, H.M. Jeong, Morphology and properties of waterborne polyurethane/clay nanocomposites, European Polymer Journal. 39 (2003) 85-91. https://doi.org/10.1016/S0014-3057(02)00173-8