Micro and Nano Clay-Biopolymer Composites for Drug Delivery

$30.00

Micro and Nano Clay-Biopolymer Composites for Drug Delivery

Asma Jabeen, Haq Nawaz Bhatti, Amina Khan

Clay-based biopolymers are among the most efficient and cost-effective composite materials that find applications in a variety of biomedical applications such as drug delivery. This chapter elaborates the different physical, chemical, and structural properties of clay biopolymeric composites, which makes them most reliable to use for the applications of drug delivery. The main focus of writing this chapter is to explore the composition, structural properties, and route of action of clay-based nanomaterials, along with elaborating the mechanism of the drug delivery system. The synthesis of clay-encapsulated drug formulation and their route of administration has been investigated in this chapter. Data for the synthesis of composites and in vitro study has also been included from the existing literature.

Keywords
Biopolymers, Drug-Delivery, Administration, In Vitro Study, Synthesis

Published online , 29 pages

Citation: Asma Jabeen, Haq Nawaz Bhatti, Amina Khan, Micro and Nano Clay-Biopolymer Composites for Drug Delivery, Materials Research Foundations, Vol. 129, pp 24-52, 2022

DOI: https://doi.org/10.21741/9781644902035-2

Part of the book on Advanced Applications of Micro and Nano Clay II

References
[1] S.M. Mousavi, S.A. Hashemi, S. Salahi, M. Hosseini, A.M. Amani, A. Babapoor, Development of clay nanoparticles toward bio and medical applications. IntechOpen, U.K., 2018, pp. 167-191. https://doi.org/10.5772/intechopen.77341
[2] S. Hua, H. Yang, W. Wang, A. Wang, Controlled release of ofloxacin from chitosan-montmorillonite hydrogel, Appl. Clay Sci. 50 (2010) 112-117. https://doi.org/10.1016/j.clay.2010.07.012
[3] L. Chen, C.H. Zhou, S. Fiore, D.S. Tong, H. Zhang, C.S. Li, W.H. Yu, Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications, Appl. Clay Sci. 127 (2016) 143-163. https://doi.org/10.1016/j.clay.2016.04.009
[4] R. Yendluri, Y. Lvov, M.M. de Villiers, V. Vinokurov, E. Naumenko, E. Tarasova, R. Fakhrullin, Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery, J. Pharm. Sci. 106 (2017) 3131-3139. https://doi.org/10.1016/j.xphs.2017.05.034
[5] H. Mahdavi, H. Mirzadeh, M.J. Zohuriaan-Mehr, F. Talebnezhad, Poly (vinyl alcohol)/chitosan/clay nano-composite films, J. Am. Sci. 9 (2013), 203-214.
[6] L.B. Williams, S.E. Haydel, Evaluation of the medicinal use of clay minerals as antibacterial agents, Int. Geol. Rev. 52 (2010) 745-770. https://doi.org/10.1080/00206811003679737
[7] D. Tan, P. Yuan, F. Annabi-Bergaya, D. Liu, H. He, High-capacity loading of 5-fluorouracil on the methoxy-modified kaolinite, Appl. Clay Sci. 100 (2014) 60-65. https://doi.org/10.1016/j.clay.2014.02.022
[8] H. Kaurav, S. Manchanda, K. Dua, D.N. Kapoor, Nanocomposites in Controlled & Targeted Drug Delivery Systems. In nano hybrids and composites, Trans Tech Publ. Ltd. 20 (2018) 27-45. https://doi.org/10.4028/www.scientific.net/NHC.20.27
[9] E. Ruiz-Hitzky, P. Aranda, M. Darder, G. Rytwo, Hybrid materials based on clays for environmental and biomedical applications, J. Mater. Chem. 20 (2010) 9306-9321. https://doi.org/10.1039/c0jm00432d
[10] J.M. Oh, T.T Biswick, J.H. Choy, Layered nanomaterials for green materials, J. Mater. Chem. 19 (2009) 2553-2563. https://doi.org/10.1039/b819094a
[11] G.P. Udayakumar, S. Muthusamy, B. Selvaganesh, N. Sivarajasekar, K. Rambabu, F. Banat, P.L. Show, Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries, J. Environ. Chem. Eng. 9 (2021) 105322. https://doi.org/10.1016/j.jece.2021.105322
[12] M. Abdollahi, M. Rezaei, G. Farzi, A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan, J. Food Eng. 111 (2012) 343-350. https://doi.org/10.1016/j.jfoodeng.2012.02.012
[13] Y. Zhao, J. Li, X. Han, Q. Tao, S. Liu, G. Jiang, D. Hou, Dual controlled release effect of montmorillonite loaded polymer nanoparticles for ophthalmic drug delivery, Appl. Clay Sci. 180 (2019) 105167. https://doi.org/10.1016/j.clay.2019.105167
[14] W. Li, D. Liu, H. Zhang, A. Correia, E. Mäkilä, J. Salonen, H.A. Santos, Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy, Acta Biomater. 48 (2017) 238-246. https://doi.org/10.1016/j.actbio.2016.10.042
[15] R. Surya, M.D. Mullassery, N.B. Fernandez, D. Thomas, Synthesis and characterization of a clay-alginate nanocomposite for the controlled release of 5-Flurouracil, J. Sci. Adv. Mater. Dev. 4 (2019), 432-441. https://doi.org/10.1016/j.jsamd.2019.08.001
[16] P. García-Guzmán, L. Medina-Torres, F. Calderas, M.J. Bernad-Bernad, J. Gracia-Mora, B. Mena, O. Manero, Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release, Col. Surf. B: Biointer. 167 (2018) 397-406. https://doi.org/10.1016/j.colsurfb.2018.04.020
[17] J. Kurczewska, P. Pecyna, M. Ratajczak, M. Gajęcka, G. Schroeder, Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing, Saudi Pharm. J. 25 (2017) 911-920. https://doi.org/10.1016/j.jsps.2017.02.007
[18] J. Xue, Y. Niu, M. Gong, R. Shi, D. Chen, L. Zhang, Y. Lvov, Electrospun Microfiber Membranes Embedded with Drug-Loaded Clay Nanotubes for Sustained Antimicrobial Protection, ACS Nano. 9 (2015) 1600-1612. https://doi.org/10.1021/nn506255e
[19] Y. Zhang, R. Gao, M. Liu, B. Shi, A. Shan, B. Cheng, Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development, Theriogenol. 83 (2015), 932-941. https://doi.org/10.1016/j.theriogenology.2014.11.027
[20] M. Liu, C. Wu, Y. Jiao, S. Xiong, C. Zhou, Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering, J. Mater. Chem. B, 1(2013) 2078-2089. https://doi.org/10.1039/c3tb20084a
[21] S. Sharif, G. Abbas, M. Hanif, A. Bernkop-Schnürch, A. Jalil, M. Yaqoob, Mucoadhesive micro-composites: Chitosan coated halloysite nanotubes for sustained drug delivery, Col. Surf. B: Biointer. 184 (2019) 110527. https://doi.org/10.1016/j.colsurfb.2019.110527
[22] V. Bertolino, G. Cavallaro, G. Lazzara, M. Merli, S. Milioto, F. Parisi, Effect of the biopolymer charge and the nanoclay morphology on nanocomposite materials, Ind. Eng. Chem. Res. 55 (2016) 7373-7380. https://doi.org/10.1021/acs.iecr.6b01816
[23] C.D. Nunes, P.D. Vaz, A.C. Fernandes, P. Ferreira, C.C. Romao, M.J. Calhorda, Loading and delivery of sertraline using inorganic micro and mesoporous materials. Eur. J Pharm. Biopharm. 66 (2007), 357-365. https://doi.org/10.1016/j.ejpb.2006.11.023
[24] A. Vikulina, D. Voronin, R. Fakhrullin, V. Vinokurov, D. Volodkin, Naturally derived nano-and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose, New J. Chem. 44(2020), 5638-5655. https://doi.org/10.1039/C9NJ06470B
[25] V. Vinokurov, A. Novikov, V. Rodnova, B. Anikushin, M. Kotelev, E. Ivanov, Y. Lvov, Cellulose nanofibrils and tubular halloysite as enhanced strength gelation agents. Polymers, 11(2019), 919. https://doi.org/10.3390/polym11050919
[26] C. Aguzzi, G. Sandri, P. Cerezo, E. Carazo, C. Viseras, Nanosized Tubular Clay Minerals: Health and Medical Applications of Tubular Clay Minerals, Elsevier, 2016, pp. 708-725. https://doi.org/10.1016/B978-0-08-100293-3.00026-1
[27] K. Florian, S.K. Swain, (2018). Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications, Mater. Sci. Eng. C, 85 (2018) 130-141. https://doi.org/10.1016/j.msec.2017.11.028
[28] L. Bounabi, N.B. Mokhnachi, N. Haddadine, F. Ouazib, R. Barille, Development of poly (2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol, J. Drug Deliv. Sci. Technol. 33 (2016) 58-65. https://doi.org/10.1016/j.jddst.2016.03.010
[29] M. Jafarbeglou, M. Abdouss, A.M. Shoushtari, M. Jafarbeglou, Clay nanocomposites as engineered drug delivery systems, RSC Adv. 6 (2016) 50002-50016. https://doi.org/10.1039/C6RA03942A
[30] S.K. Swain, B. Shur, S.K. Patra, Poly (acrylamide‐co‐vinyl alcohol)-Superabsorbent materials reinforced by modified clay, Poly. Comp. 34(2013) 1794-1800. https://doi.org/10.1002/pc.22583
[31] M. Rahim, M.R.H.M. Haris, N.U. Saqib, An overview of polymeric nano-biocomposites as targeted and controlled-release devices. Biophy. Rev. (2020)1-9. https://doi.org/10.1007/s12551-020-00750-0
[32] C. Viseras, C. Aguzzi, P. Cerezo, M.C. Bedmar, Biopolymer-clay nanocomposites for controlled drug delivery, Mater. Sci. Tech. 24 (2008) 1020-1026. https://doi.org/10.1179/174328408X341708
[33] S.K. Patra, S. K. Swain, Swelling study of superabsorbent PAA‐co‐PAM/clay nanohydrogel, J. Appl. Poly. Sci. 120 (2011), 1533-1538. https://doi.org/10.1002/app.33381
[34] B. Gulen, P. Demircivi, Synthesis and characterization of montmorillonite/ciprofloxacin/tio2 porous structure for controlled drug release of ciprofloxacin tablet with oral administration, Appl. Clay Sci. 197 (2020) 105768. https://doi.org/10.1016/j.clay.2020.105768
[35] F. García-Villén, E. Carazo, A. Borrego-Sánchez, R. Sánchez-Espejo, P. Cerezo, C. Viseras, C. Aguzzi, Clay minerals in drug delivery systems. In Modified clay and zeolite nanocomposite materials, Elsevier. (2019) 129-166. https://doi.org/10.1016/B978-0-12-814617-0.00010-4
[36] C. Aguzzi, G. Sandri, P. Cerezo, E. Carazo, C. Viseras, Health and medical applications of tubular clay minerals. In Developments in clay3 science, Elsevier. 7 (2016) 708-725. https://doi.org/10.1016/B978-0-08-100293-3.00026-1
[37] H. Kohay, C. Sarisozen, R. Sawant, A. Jhaveri, V.P. Torchilin, Y.G. Mishael, PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity, Acta. Biomater. 55 (2017) 443-454. https://doi.org/10.1016/j.actbio.2017.04.008
[38] K.M. Rao, A. Kumar, M. Suneetha, S.S. Han, pH and near-infrared active; chitosan- oated halloysite nanotubes loaded with curcumin-au hybrid nanoparticles for cancer drug delivery, Int. J. Biol. Macromol. 112 (2018) 119-125. https://doi.org/10.1016/j.ijbiomac.2018.01.163
[39] R. García-Vázquez, E.P. Rebitski, L. Viejo, C. de los Rios, M. Darder, E.M. Garcia-Frutos, Clay-based hybrids fo r controlled release of 7-azaindole derivatives as neuroprotective drugs in the treatment of Alzheimer’s disease, Appl. Clay Sci. 189 (2020) 105541. https://doi.org/10.1016/j.clay.2020.105541
[40] E.P. Rebitski, P. Aranda, M. Darder, R. Carraro, E. Ruiz-Hitzky, Intercalation of metformin into montmorillonite. Dalton Trans. 47 (2018) 3185-3192. https://doi.org/10.1039/C7DT04197G
[41] V. Trivedi, U. Nandi, M. Maniruzzaman, N.J. Coleman, Intercalated theophylline-smectite hybrid for pH-mediated delivery, Drug Deliv. Transl. Res. 8 (2018) 1781-1789. https://doi.org/10.1007/s13346-018-0478-8
[42] N.B. Belmessaoud, N. Bouslah, N. Haddadine, Clay/(PEG-CMC) biocomposites as a novel delivery system for ibuprofen, J. Polym. Eng., 40 (2020) 350-359. https://doi.org/10.1515/polyeng-2019-0390
[43] W. Chrzanowski, S.Y. Kim, E.A. Abou Neel, Biomedical applications of clay, Aus. J. Chem., 66 (2013) 1315-1322. https://doi.org/10.1071/CH13361
[44] B.D. Kevadiya, H.C. Bajaj, The layered silicate, montmorillonite (MMT) as a drug delivery carrier. In Key Engineering Materials, Trans Tech Pub. Ltd. 571 (2013) 111-132. https://doi.org/10.4028/www.scientific.net/KEM.571.111
[45] K. Chen, B. Guo, J. Luo, Quaternized carboxymethyl chitosan/organic montmorillonite nanocomposite as a novel cosmetic ingredient against skin aging, Carbohydr. polym., 173 (2017) 100-106. https://doi.org/10.1016/j.carbpol.2017.05.088
[46] F. Guo, S. Aryana, Y. Han, Y. Jiao, A review of the synthesis and applications of polymer-nanoclay composites, Appl. Sci., 8 (2018) 1696. https://doi.org/10.3390/app8091696
[47] Y.M. Lvov, M.M. DeVilliers, R.F. Fakhrullin, The application of halloysite tubule nanoclay in drug delivery, Expert Opin. Drug Deliv. 13(2016) 977-986. https://doi.org/10.1517/17425247.2016.1169271
[48] L.M.A. Meirelles, F.N. Raffin, Clay and polymer-based composites applied to drug release: A scientific and technological prospectio, J. of Pharm. Pharm. Sci. 20 (2017) 115-134. https://doi.org/10.18433/J3R617
[49] N. Selvasudha, U.M. Dhanalekshmi, S. Krishnaraj, Y.H. Sundar, N.S.D. Devi, I. Sarathchandiran, Multifunctional Clay in Pharmaceuticals. In Clay Sci. Techn. Intech Open, U.K., 2020, pp. 99-119 https://doi.org/10.5772/intechopen.92408
[50] X. Wang, Y. Du, J. Luo, Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity, Nanotech. 19 (2008) 065707. https://doi.org/10.1088/0957-4484/19/6/065707
[51] Y. Dong, S.S. Feng, Poly (d, l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs, Biomater. 26(2005), 6068-6076. https://doi.org/10.1016/j.biomaterials.2005.03.021
[52] C.N. Cheaburu-Yilmaz, R.P. Dumitriu, M.T. Nistor, C. Lupusoru, M.I. Popa, L. Profire, C. Vasile, Biocompatible and biodegradable chitosan/clay nanocomposites as new carriers for theophylline controlled release, J. Pharm. Res. Int. (2015) 228-254. https://doi.org/10.9734/BJPR/2015/16525
[53] S. Leporatti, Polymer Clay Nano-composites, Polym.11 (2019) 1445. https://doi.org/10.3390/polym11091445
[54] F. Kianfar, N. Dempster, E. Gaskell, M. Roberts, G. Hutcheon, Lyophilised Biopolymer-Clay Hydrogels for Drug Delivery, MJNDR.1 (2017) 1-9. https://doi.org/10.18689/mjndr-1000101
[55] P.V.K. Kumari, Y.S. Rao, S. Akhila, Role of nanocomposites in drug delivery, GSC Biol. Pharm. Sci. 8(2019) 094-103. https://doi.org/10.30574/gscbps.2019.8.3.0150
[56] R.I. Iliescu, E. Andronescu, G. Voicu, A. Ficai, C.I. Covaliu, Hybrid materials based on montmorillonite and citostatic drugs: Preparation and characterization, Appl. Clay Sci. 52 (2011) 62-68. https://doi.org/10.1016/j.clay.2011.01.031
[57] L.A. De Sousa Rodrigues, A. Figueiras, F. Veiga, R.M. de Freitas, L.C.C. Nunes, E.C. da Silva Filho, C.M. da Silva Leite, The systems containing clays and clay minerals from modified drug release: a review, Colloids Surf. B. 103 (2013) 642-651. https://doi.org/10.1016/j.colsurfb.2012.10.068
[58] R. Suresh, S.N. Borkar, V.A. Sawant, V.S. Shende, S.K. Dimble, Nanoclay drug delivery system, IJPSN. 3(2010), 901-905
[59] N. Khatoon, M.Q. Chu, C.H. Zhou, Nanoclay-based drug delivery systems and their therapeutic potentials, J. Mater. Chem. B. 8(2020), 7335-7351. https://doi.org/10.1039/D0TB01031F
[60] H.J. Hong, H.S. Jeong, K.M. Roh, I. Kang, “Preparation of Mesalazine-Clay Composite Encapsulated Alginate (MCA) Bead for Targeted Drug Delivery: Effect of Composite Content and CaCl2 Concentration”, Macromol. Res. 26 (2018) 1019-1025. https://doi.org/10.1007/s13233-019-7033-4
[61] G. Cavallaro, G. Lazzara, M. Massaro, S. Milioto, R. Noto, F. Parisi, S. Riela, Biocompatible poly (N-isopropyl-acryl-amide)-halloysite nanotubes for thermo responsive curcumin release, J. Phys. Chem. C. 119(2015) 8944-8951. https://doi.org/10.1021/acs.jpcc.5b00991
[62] M. Baek, J.H. Choy, S.J. Choi, Montmorillonite intercalated with glutathione for antioxidant delivery: Synthesis, characterization, and bioavailability evaluation, Int. J. Pharm. 425 (2012) 29-34. https://doi.org/10.1016/j.ijpharm.2012.01.015
[63] S. ul Haque, A. Nasar, Montmorillonite clay nanocomposites for drug delivery. In Applications of Nanocomposite Materials in Drug Delivery, Woodhead Publishing, Sawstone U.K., 2018, pp. 633-648. https://doi.org/10.1016/B978-0-12-813741-3.00028-5
[64] G.V. Joshi, B.D. Kevadiya, H.M. Mody, H.C. Bajaj, “Confinement and controlled release of quinine on chitosan-montmorillonite bionanocomposites”, J. Polym. Sci. A: Polym. Chem. 50 (2012) 423-430. https://doi.org/10.1002/pola.25046
[65] H.J. Hong, J. Kim, Y.J. Suh, D. Kim, K.M. Roh, I. Kang, “pH-sensitive mesalazine carrier for colon-targeted drug delivery: A two-fold composition of mesalazine with a clay and alginate”, Macromol. Res. 25 (2015) 1145-1152 https://doi.org/10.1007/s13233-017-5150-5
[66] W. Hur, M. Park, J.Y. Lee, M.H. Kim, S.H. Lee, C.G. Park, S.N. Kim, H.S. Min, H.J. Min, J.H. Chai, S.J. Lee, “Bioabsorbable bone plates enabled with local, sustained delivery of alendronate for bone regeneration”, J. Control. Release. 222 (2016), 97-106 https://doi.org/10.1016/j.jconrel.2015.12.007
[67] E. Kolanthai, P. Abinaya Sindu, K. Thanigai Arul, V. Sarath Chandra, E. Manikandan, S. Narayana Kalkura, “Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery”, J. Photochem. Photobiol. B Biol. 166 (2017) 220-231. https://doi.org/10.1016/j.jphotobiol.2016.12.005
[68] A.C. Santos, C. Ferreira, F. Veiga, A.J. Ribeiro, A. Panchal, Y. Lvov, A. Agarwal, Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold, Adv. Colloid Interf. Sci. 257 (2018) 58-70. https://doi.org/10.1016/j.cis.2018.05.007
[69] R. Onnainty, G. Granero, Chitosan-clays based nanocomposites: promising materials for drug delivery applications. Nanomed, Nanotechnol. J. 1 (2017) 114.
[70] M. Delyanee, A. Solouk, S. Akbari, M.D. Joupari, “Hemostatic Electrospun Nanocomposite Containing Poly (lactic acid)/Halloysite Nanotube Functionalized by Poly (amidoamine) Dendrimer for Wound Healing Application: in Vitro and in Vivo Assays”, Macromol. Biosci. (2021) 2100313. https://doi.org/10.1002/mabi.202100313
[71] R.K. Matharu, L. Ciric, M. Edirisinghe, Nanocomposites: Suitable alternatives as antimicrobial agents, Nanotechnol. 29 (2018) 282001. https://doi.org/10.1088/1361-6528/aabbff
[72] S.K.S. Kushwaha, N. Kushwaha, P. Pandey, B. Fatma, “Halloysite Nanotubes for Nanomedicine: Prospects, Challenges and Applications”, Bio Nano Sci.. 11 (2021) 200-208. https://doi.org/10.1007/s12668-020-00801-6
[73] U. Jammalamadaka, K. Tappa, D. K. Mills, Calcium phosphate/clay nanotube bone cement with enhanced mechanical properties and sustained drug release, IntechOpen, U.K., 2018, pp. 123-146 https://doi.org/10.5772/intechopen.74341
[74] R.D. Sagare, F.S. Dasankoppa, H.N. Sholapur, K. and Burga, “Halloysite nanotubes: design, characterization and applications. A review”. Farmacia, 69 (2021) 208-214. https://doi.org/10.31925/farmacia.2021.2.3