Sonochemical Synthesis of Polymer Nanocomposites

$30.00

Sonochemical Synthesis of Polymer Nanocomposites

M.K. Poddar, V.S. Moholkar, S. Chakma

Polymer nanocomposite materials have drawn the attention of scientists due to their outstanding properties as compared to native polymers. The nanocomposites of polymer are widely used in packaging, aerospace, nanocoatings, solar energy, automotive, electronics, semiconductors, cosmetic, and construction. The modifications in the properties are done according to their applications in various fields. The properties of such nanocomposite materials depend on several variables such as nanoparticles dispersion and distribution, flame retardancy, mechanical and tensile strength, thermal properties, electrical and magnetic properties. In addition to these, the nanofillers play a vital role in nanocomposites to enhance or modify their mechanical and physical properties. In this chapter, various aspects of the nanocomposites of polymer have been discussed, including ultrasound-assisted in-situ polymerization intercalation and nanoparticles dispersion. The processing of nanocomposites using different filler materials such as ZnO, reduced graphene oxide (RGO), Cloisite-30B, etc. as well as the percentage of filler materials has been discussed in detailed. Finally, the nanocomposites have been characterized using different analytical techniques to elucidate its properties.

Keywords
Polymer Nanocomposite, Copolymerization, PMMA/Cloisite 30B, PMMA/ZnO, PMMA/RGO, PMMA-Magnetic Particle, Polymer Matrix, Nanofiller, Ultrasound

Published online , 49 pages

Citation: M.K. Poddar, V.S. Moholkar, S. Chakma, Sonochemical Synthesis of Polymer Nanocomposites, Materials Research Foundations, Vol. 129, pp 233-281, 2022

DOI: https://doi.org/10.21741/9781644902035-10

Part of the book on Advanced Applications of Micro and Nano Clay II

References
[1] Y. Xu, W.J. Brittain, C. Xue, R.K. Eby, Effect of clay type on morphology and thermal stability of PMMA-clay nanocomposites prepared by heterocoagulation method, Polymer. 45 (2004) 3735-3746. https://doi.org/10.1016/j.polymer.2004.03.058
[2] T.Y. Tsai, M.J. Lin, Y.C. Chuang, P.C. Chou, Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites, Mater. Chem. Phys. 138 (2013) 230-237. https://doi.org/10.1016/j.matchemphys.2012.11.051
[3] E. Tang, G.X. Cheng, X. Ma, Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles, Powder Technol. 161 (2006) 209-214. https://doi.org/10.1016/j.powtec.2005.10.007
[4] M. A. Aldosari, A. A. Othman, E.H. Alsharaeh, Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation, Molecules. 18 (2013) 3152-3167. https://doi.org/10.3390/molecules18033152
[5] R.K. Layek, S. Samanta, D.P. Chatterjee, A.K. Nandi, Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation, Polymer. 51 (2010) 5846-5856. https://doi.org/10.1016/j.polymer.2010.09.067
[6] H. Martinez, L.D. Onofrio, G. Gonzalez, Mossbauer study of a Fe3O4/PMMA nanocomposite synthesized by sonochemistry, Hyperfine Interac. 224 (2013) 99-107. https://doi.org/10.1007/s10751-013-0829-2
[7] V.V. Vodnik, D.K. Bozanic, E. Dzunuzovic, J. Vukovic, J.M. Nedeljkovic, Thermal and optical properties of silver-poly(methylmethacrylate) nanocomposites prepared by in-situ radical polymerization, Eur. Polym. J. 46 (2010) 137-144. https://doi.org/10.1016/j.eurpolymj.2009.10.022
[8] L.Y. Li, S.L. Li, Y. Shao, R. Dou, B. Yin, M. B. Yang, PVDF/PS/HDPE/MWCNTs/Fe3O4 nanocomposites: Effective and lightweight electromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles, Curr. Appl. Phys. 18 (2018) 388-396. https://doi.org/10.1016/j.cap.2018.01.014
[9] D. Guan, Z. Gao, W. Yang, J. Wang, Y. Yuan, B. Wang, M. Zhang, L. Liu, Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material, Mater. Sci. Eng. B: Solid-State Materials for Advanced Technology. 178 (2013) 736-743. https://doi.org/10.1016/j.mseb.2013.03.010
[10] K. Muller, E. Bugnicourt, M. Latorre, M. Jorda, Y.E. Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bolz, G. Perez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castello, M. Schmid, Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields, Nanomaterials 7,74 (2017) 1-47. https://doi.org/10.3390/nano7040074
[11] S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci. 1 (2019) 2-30. https://doi.org/10.1016/j.nanoms.2019.02.006
[12] J. Fawaz, V. Mittal, Synthesis techniques for polymer nanocomposites, first Ed., Wiley-VCH Verlag GmbH & Co. KGaA: 2015.
[13] M. Akashi, H. Ajiro, Template polymerization (molecular templating), Encyclopedia of polymeric nanomaterials, Springer-Verlag Berlin Heidelberg: 2014. https://doi.org/10.1007/978-3-642-36199-9_202-1
[14] Gordon Armstrong, An introduction to polymer nanocomposites, Eur. J. Phys. 36 (2015) 063001 (34pp). https://doi.org/10.1088/0143-0807/36/6/063001
[15] P. Kruus, O. Neill, Polymerization ultrasound and depolymerization by ultrasound, Ultrasonics. 26 (1988) 352-355. https://doi.org/10.1016/0041-624X(88)90035-2
[16] B. A. Bhanvase, D.V. Pinjari, P.R. Gogate, S.H. Sonawane, A. B. Pandit, Synthesis of exfoliated poly(styrene-co-methyl methacrylate)/montmorillonite nanocomposite using ultrasound assisted in situ emulsion copolymerization, Chem. Eng. J. 181-182 (2012) 770-778. https://doi.org/10.1016/j.cej.2011.11.084
[17] E.A.Z. Contreras, C.A.H. Escobar, A.N. Fontes, S.G.F. Gallardo, Synthesis of carbon black/polystyrene conductive nanocomposite. Pickering emulsion effect characterized by TEM, Micron 42 (2011) 263-270. https://doi.org/10.1016/j.micron.2010.10.005
[18] T.J. Mason, J.P. Lorimer, Applied Sonochemistry. The Uses of Power Ultrasound in chemistry and processing, Wiley‐VCH Verlag, Weinheim, 2002. https://doi.org/10.1002/352760054X
[19] B.M. Teo, S.W. Prescott, M. Ashokkumar, F. Grieser, Ultrasound initiated miniemulsion polymerization of methacrylate monomers., Ultrason Sonochem. 15 (2008) 89-94. https://doi.org/10.1016/j.ultsonch.2007.01.009
[20] H. Xu, K.S. Suslick, Sonochemical preparation of functionalized graphenes, J. Am. Chem. Soc. 133 (2011) 9148-9151. https://doi.org/10.1021/ja200883z
[21] R. Kuppa, V.S. Moholkar, Physical features of ultrasound-enhanced heterogeneous permanganate oxidation, Ultrason. Sonochem. 17 (2010) 123-131. https://doi.org/10.1016/j.ultsonch.2009.05.011
[22] B.A. Bhanvase, D.V. Pinjari, P.R. Gogate, S.H. Sonawane, A.B. Pandit, Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization, Chem. Eng. Process.: Process. Intensif. 50 (2011) 1160-1168. https://doi.org/10.1016/j.cep.2011.09.002
[23] S. Chakma, V.S. Moholkar, Physical mechanism of sono-Fenton process, AIChE J. 59 (2013) 4303-4313. https://doi.org/10.1002/aic.14150
[24] P. Kruus, D. McDonald, T. J. Patraboy, Polymerization of styrene initiated by ultrasonic cavitation, J. Phys. Chem. 91 (1987) 3041-3047. https://doi.org/10.1021/j100295a080
[25] G. J. Price, D. J. Norris, P. J. West, Polymerization of methyl methacrylate initiated by ultrasound, Macromolecules. 25 (1992) 6447-6454. https://doi.org/10.1021/ma00050a010
[26] B.A. Bhanvase, S.H. Sonawane, New approach for simultaneous enhancement of anticorrosive and mechanical properties of coatings: application of water repellent nano CaCO3-PANI emulsion nanocomposite in alkyd resin, Chem. Eng. J. 156 (2010) 177-183. https://doi.org/10.1016/j.cej.2009.10.013
[27] J.G. Ryu, H. Kim, J.W. Lee, Characteristics of polystyrene/polyethylene/clay nanocomposites prepared by ultrasound-assisted mixing process, Polym. Eng. Sci. 44 (2004) 1198-1204. https://doi.org/10.1002/pen.20114
[28] M. Garcia, G.V. Vliet, M.G.J.T. Cate, F. Chavez, B. Norder, B. Kooi, W.E.V. Zyl, H. Verweij, D.H.A. Blank, Large-scale extrusion processing and characteriza- tion of hybrid nylon-6/SiO2 nanocomposites, Polym. Adv. Technol. 15 (2004) 164-172. https://doi.org/10.1002/pat.458
[29] S.S. Barkade, J.B. Naik, S.H. Sonawane, Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapor sensing, Colloids Surf. A 378 (2011) 94-98. https://doi.org/10.1016/j.colsurfa.2011.02.002
[30] S. V. Krishna, G. Pugazhenthi, Influence of processing conditions on the properties of polystyrene (PS)/organomontmorillonite (OMMT) nanocomposites prepared via solvent blending method, Int. J. Polym. Mater. 60 (2010) 144-162. https://doi.org/10.1080/00914037.2010.504167
[31] G.A. Wang, C.C. Wang, C.Y. Chen, The disorderly exfoliated LDHs/PMMA nanocomposites synthesized by in situ bulk polymerization: The effects of LDH-U on thermal and mechanical properties, Polym. Degrad. Stab. 91 (2006) 2443-2450. https://doi.org/10.1016/j.polymdegradstab.2006.03.008
[32] C. Zeng, L.J. Lee, Poly ( methyl methacrylate ) and Polystyrene / Clay Nanocomposites Prepared by in-Situ Polymerization, Macromolecules. 34 (2001) 4098-4103. https://doi.org/10.1021/ma010061x
[33] M. Alexandre, P Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R, 28 (2000) 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
[34] M.K. Poddar, S. Sharma, V.S. Moholkar, Sonochemical synthesis of PMMA/Cloisite-30B nanocomposites: A mechanistic investigation, Macromolecualr Symposia. 361 (2016) 82-100. https://doi.org/10.1002/masy.201500009
[35] S. Sharma, M. Kumar Poddar, V.S. Moholkar, Enhancement of thermal and mechanical properties of poly(MMA-co-BA)/Cloisite-30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization, Ultrason. Sonochem. 36 (2017) 212-225. https://doi.org/10.1016/j.ultsonch.2016.11.029
[36] M. K. Poddar, K. Vishwakarma ,V. S. Moholkar, Rheological and mechanical properties of PMMA/organoclay nanocomposites prepared via ultrasound-assisted in-situ emulsion polymerization, Korean J. Chem. Eng. 36 (2019), 828-836. https://doi.org/10.1007/s11814-019-0252-8
[37] L.J. Borthakur, D. Das, S.K. Dolui, Development of core-shell nano composite of poly (styrene-co-methyl acrylate) and bentonite clay by ultra sonic assisted mini-emulsion polymerization, Mater. Chem. Phys. 124 (2010) 1182-1187. https://doi.org/10.1016/j.matchemphys.2010.08.055
[38] M.K. Poddar, A Ph.D. thesis on ‘Ultrasound assisted synthesis and characterization of polymethyl methacrylate (PMMA) nanocompsoites’ (2017), Indian Institute of Technology, Guwahati-Assam, India.
[39] A.B. Morgan, H.D. Harris, Exfoliated polystyrene clay nanocomposites synthesized by solvent blending with sonication, Polymer 45 (2004) 8695-8703. https://doi.org/10.1016/j.polymer.2004.10.067
[40] J. W. Gilman, Flammability and thermal stability studies of polymer-layered silicate (clay) nanocomposites, Appl. Clay. Sci. 15 (1999) 31-49. https://doi.org/10.1016/S0169-1317(99)00019-8
[41] P. Maiti, P.H. Nam, M. Okamoto, N. Hasegawa, A. Usuki, Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites, Macromolecules. 35 (2002) 2042-2049. https://doi.org/10.1021/ma010852z
[42] M. Kumar, V. Kumar, P. Upadhyaya, G. Pugazhenthi, Fabrication of poly (methyl methacrylate)(PMMA) nanocomposites with modified nanoclay by melt intercalation, Compos. Interface. 21 (2014) 819-832. https://doi.org/10.1080/15685543.2014.961780
[43] H.C. Huang, T.E. Hsieh, Preparation and characterizations of highly transparent UV-curable ZnO-acrylic nanocomposites, Ceramics International. 36 (2010) 1245-1251. https://doi.org/10.1016/j.ceramint.2010.01.010
[44] Y. Zhang, X. Wang, Y. Liu, S. Song, D. Liu, Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability, J. Mater. Chem. 22 (2012) 11971-11977. https://doi.org/10.1039/c2jm30672g
[45] K. Hayashida, Y. Takatani, Poly(methyl methacrylate)-grafted ZnO nanocomposites with variable dielectric constants by UV light irradiation, J. Mater. Chem. C. 4 (2016) 3640-3645. https://doi.org/10.1039/C6TC00882H
[46] B. Kulyk, V. Kapustianyk, O. Krupka, B. Sahraoui, Optical absorption and photoluminescence properties of ZnO/PMMA nanocomposite films, Journal of Physics: Conference Series. 289 (2011) 012003. https://doi.org/10.1088/1742-6596/289/1/012003
[47] R.Y. Hong, J.Z. Qian, J.X. Cao, Synthesis and characterization of PMMA grafted ZnO nanoparticles, Powder Technol. 163 (2006) 160-168. https://doi.org/10.1016/j.powtec.2006.01.015
[48] M.K. Poddar, S. Sharma, V.S. Moholkar, Investigations in two-step ultrasonic synthesis of PMMA/ZnO nanocomposites by in-situ emulsion polymerization, Polymer 99 (2016) 453-469. https://doi.org/10.1016/j.polymer.2016.07.052
[49] A. Das, D.Y. Wang, A. Leuteritz, K. Subramaniam, H.C. Greenwell, U. Wagenknecht, G. Heinrich, Preparation of zinc oxide free, transparent rubber nanocomposites using a layered double hydroxide filler, J. Mater. Chem. 21 (2011) 7194-7200 https://doi.org/10.1039/c0jm03784b
[50] K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, W.F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sole-gel method, Chem. Phys. Lett. 409 (2005) 208-211. https://doi.org/10.1016/j.cplett.2005.05.027
[51] M.A.A. Rahman, S. Mahmud, A.K. Alias, A.F.M. Nor, Effect of nanorod zinc oxide on electrical and optical properties of starchebased polymer nanocomposites, J. Phys. Sci. 24 (2013) 17-28.
[52] J.H. Li, R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, J. Ding, Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings, Prog. Org. Coat. 64 (2009) 504-509. https://doi.org/10.1016/j.porgcoat.2008.08.013
[53] G. Goncalves, P.A.A.P. Marques, A. Barros-Timmons, I. Bdkin, M.K. Singh, N. Emami, J. Gracio, Graphene oxide modified with PMMA via ATRP as a reinforcement filler, J. Mater. Chem. 20 (2010) 9927-9934. https://doi.org/10.1039/c0jm01674h
[54] K.P. Pramoda, H. Hussain, H.M. Koh, H.R. Tan, C.B. He, Covalent bonded polymer-graphene nanocomposites, J. Polym. Sci. Part A: Polym. Chem. 48 (2010) 4262-4267. https://doi.org/10.1002/pola.24212
[55] K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, High-nanofi ller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly, Adv. Funct. Mater. 20 (2010) 3322-3329. https://doi.org/10.1002/adfm.201000723
[56] H. Zhang, Q. Yan, W. Zheng, Z. He, Z. Yu, Tough rraphene polymer microcellular foams for electromagnetic interference shielding, ACS Appl. Mater. Interfaces. 3 (2011) 918-924. https://doi.org/10.1021/am200021v
[57] S.N. Tripathi, P. Saini, D. Gupta, V. Choudhary, Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization, J. Mater. Sci. 48 (2013) 6223-6232. https://doi.org/10.1007/s10853-013-7420-8
[58] J. Wang, Z. Shi, Y. Ge, Y. Wang, J. Fan, J. Yin, Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization, Mater. Chem.Phys. 136 (2012) 43-50. https://doi.org/10.1016/j.matchemphys.2012.06.017
[59] S.H. Lee, D.R. Dreyer, J. An, A. Velamakanni, R.D. Piner, S. Park, Y. Zhu, S.O. Kim, C.W. Bielawski, R.S. Ruoff, Polymer brushes via controlled surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol. Rapid Commun. 31 (2010) 281-288. https://doi.org/10.1002/marc.200900641
[60] M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, J. Mater. Chem. 19 (2009) 7098-7105. https://doi.org/10.1039/b908220d
[61] M.K. Poddar, S. Pradhan, V.S. Moholkar, M. Arjmand, U. Sundararaj, Ultrasound-assisted synthesis and characterization of polymethyl methacrylate/reduced graphene oxide nanocomposites, AIChE J. 64 (2018). https://doi.org/10.1002/aic.15936
[62] L.Z. Guan, L. Zhao, Y.J. Wan, L.C. Tang, Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications, Nanoscale. 10 (2018) 14788-14811. https://doi.org/10.1039/C8NR03044H
[63] K. Krishnamoorthy, G.S. Kim, S. J. Kim, Graphene nanosheets: Ultrasound assisted synthesis and characterization, Ultrason. Sonochem. 20 (2013) 644-649. https://doi.org/10.1016/j.ultsonch.2012.09.007
[64] T. Banert, U.A. Peuker, Preparation of highly filled super-paramagnetic PMMA-magnetite nano composites using the solution method, J. Mater. Sci. 41 (2006) 3051-3056. https://doi.org/10.1007/s10853-006-6976-y
[65] S. Kirchberg, M. Rudolph, G. Ziegmann, U.A. Peuker, Nanocomposites based on technical polymers and sterically functionalized soft magnetic magnetite nanoparticles: Synthesis, processing, and characterization, J. Nanomater. (2012) 670531. https://doi.org/10.1155/2012/670531
[66] R. Bera, A.K. Das, A. Maitra, S. Paria, S.K. Karan, B.B. Khatua, Salt leached viable porous Fe3O4 decorated polyaniline – SWCNH/PVDF composite spectacles as an admirable electromagnetic shielding efficiency in extended Ku-band region, Composites Part B: Engineering. 129 (2017) 210-220. https://doi.org/10.1016/j.compositesb.2017.07.073
[67] A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Iron oxide nanoparticles-chitosan composite based glucose biosensor, Biosensors and Bioelectronics. 24 (2008) 676-683. https://doi.org/10.1016/j.bios.2008.06.032
[68] S. Cui, X. Shen, B. Lin, Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents, Rare Metals. 25 (2006) 426-430. https://doi.org/10.1016/S1001-0521(07)60118-1
[69] L.G. Bach, M.D. Islam, J.T. Kim, S. Y. Seo, K.T. Lim, Encapsulation of Fe3O4 magnetic nanoparticles with poly(methyl methacrylate) via surface functionalized thiol-lactam initiated radical polymerization, Appl. Surf. Sci. 258 (2012) 2959-2266. https://doi.org/10.1016/j.apsusc.2011.11.016
[70] F. Nsib, N. Ayed, Y. Chevalier, Dispersion of hematite suspensions with sodium polymethacrylate dispersants in alkaline medium, Colloids Surf. A. 286 (2006) 17-26. https://doi.org/10.1016/j.colsurfa.2006.02.035
[71] M.K. Poddar, M. Arjmand, U. Sundararaj, V.S. Moholkar, Ultrasound-assisted synthesis and characterization of magnetite nanoparticles and poly(methyl methacrylate)/magnetite nanocomposites, Ultrsono. Sonochem. 43 (2018) 38-51. https://doi.org/10.1016/j.ultsonch.2017.12.035
[72] W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols, J. Colloid. Interf. Sci. 305 (2007) 366-370 https://doi.org/10.1016/j.jcis.2006.10.023
[73] J.L. Wilson, P. Poddar, N.A. Frey, H. Srikanth, K. Mohomed, J.P. Harmon, S. Kotha, J. Wachsmuth, Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles, J. Appl. Phys. 95 (2004) 1439-1443. https://doi.org/10.1063/1.1637705
[74] M. Tanniru, Q. Yuan, R.D.K. Misra, On significant retention of impact strength in clay reinforced high density polyethylene (HDPE) nanocomposites, Polymer 47 (2006) 2133-2146. https://doi.org/10.1016/j.polymer.2006.01.063
[75] S. Sirapanichart, P. Monvisade, P. Siriphannon, J. Nukeaw, Poly(methyl metha- crylate-co-butyl acrylate)/organophosphate-modified montmorillonite composites, Iran. Polym. J. 20 (2011) 803-811.