In-situ Composite Formation by Polymerization on the Hectorite or other Clay Materials

$30.00

In-situ Composite Formation by Polymerization on the Hectorite or other Clay Materials

Madhur Babu Singh, Prashant Singh, Pallavi Jain

Clays are the naturally existing mineral having layered structures with at least one dimension in the nano-range that are economical and environment friendly. There exist two types of nanoclays, anionic and cationic, depending on the surface charge layered. Nanoclays have wide application in different areas for improving physical properties like heat resistance, mechanical strength and anticorrosion quality of the polymer matrix. Clay and its composite have promising applications including tissue engineering, petroleum, drug delivery, food packaging and enzyme immobilization. Due to their superior properties like flame retardancy, non-toxic, magnetic properties and large surface areas; hectorites and their composite are of great interest. The primary focus of this chapter is Composite Formation by in-situ polymerization of hectorite/clay materials and its application in different areas.

Keywords
Hectorite, In-Suit Polymerization, Nanoclays, Economical, Environment Friendly

Published online , 23 pages

Citation: Madhur Babu Singh, Prashant Singh, Pallavi Jain, In-situ Composite Formation by Polymerization on the Hectorite or other Clay Materials, Materials Research Foundations, Vol. 129, pp 1-23, 2022

DOI: https://doi.org/10.21741/9781644902035-1

Part of the book on Advanced Applications of Micro and Nano Clay II

References
[1] H. Essabir, M. Raji, R. Bouhfid, A. el K. Qaiss, Nanoclay and Natural Fibers Based Hybrid Composites: Mechanical, Morphological, Thermal and Rheological Properties, in: M. Jawaid, A. el K. Qaiss, R. Bouhfid (Eds.), Nanoclay reinforced polymer composites : Natural fibre/nanoclay hybrid composites, Springer Nature Switzerland, 2016, pp. 29-49. https://doi.org/10.1007/978-981-10-0950-1_2
[2] R.S.H. Al-Maamari, J.S. Buckley, Asphaltene precipitation and alteration of wetting: Can wettability change during oil production? In: SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 2000. https://doi.org/10.2118/59292-MS
[3] K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema, I. Inuwa, Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites, Mater. Des. 46 (2013) 391-410. https://doi.org/10.1016/j.matdes.2012.10.044
[4] F. Yu, H. Deng, H. Bai, Q. Zhang, K. Wang, F. Chen, Q. Fu, Confine clay in an alternating multilayered structure through injection molding: A simple and efficient route to improve rarrier performance of polymeric materials, ACS Appl. Mater. Interfaces. 7 (2015) 10178-10189. https://doi.org/10.1021/acsami.5b00347
[5] V. Mittal, Polymer layered silicate nanocomposites: A review, Materials (Basel). 2 (2009) 992-1057. https://doi.org/10.3390/ma2030992
[6] K. Yusoh, S.V. Kumaran, F.S. Ismail, Surface modification of nanoclay for the synthesis of polycaprolactone (PCL) – Clay Nanocomposite, MATEC Web Conf. 150 (2018) 1-6. https://doi.org/10.1051/matecconf/201815002005
[7] M.R. Irshidat, M.H. Al-Saleh, Thermal performance and fire resistance of nanoclay modified cementitious materials, Constr. Build. Mater. 159 (2018) 213-219. https://doi.org/10.1016/j.conbuildmat.2017.10.127
[8] G. Choudalakis, A.D. Gotsis, Permeability of polymer/clay nanocomposites: A review, Eur. Polym. J. 45 (2009) 967-984. https://doi.org/10.1016/j.eurpolymj.2009.01.027
[9] P. Taylor, S. Ganguly, K. Dana, T.K. Mukhopadhyay, T.K. Parya, S. Ghatak, S. Ganguly, K. Dana, T.K. Mukhopadhyay, T.K. Parya, S. Ghatak, Organophilic Nano clay : A comprehensive review, Trans. Indian Ceram. Soc. (2013) 37-41.
[10] N. Öztürk, A. Tabak, S. Akgöl, A. Denizli, Newly synthesized bentonite-histidine (Bent-His) micro-composite affinity sorbents for IgG adsorption, Colloids Surfaces A Physicochem. Eng. Asp. 301 (2007) 490-497. https://doi.org/10.1016/j.colsurfa.2007.01.026
[11] S. Pavlidou, C.D. Papaspyrides, A review on polymer-layered silicate nanocomposites, Prog. Polym. Sci. 33 (2008) 1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008
[12] P. Liu, Polymer modified clay minerals: A review, Appl. Clay Sci. 38 (2007) 64-76. https://doi.org/10.1016/j.clay.2007.01.004
[13] Y. Lvov, E. Abdullayev, Functional polymer-clay nanotube composites with sustained release of chemical agents, Prog. Polym. Sci. 38 (2013) 1690-1719. https://doi.org/10.1016/j.progpolymsci.2013.05.009
[14] T.S. Gaaz, A.B. Sulong, A.A.H. Kadhum, A.A. Al-Amiery, M.H. Nassir, A.H. Jaaz, The impact of halloysite on the thermo-mechanical properties of polymer composites, Molecules. 22 (2017) 13-15. https://doi.org/10.3390/molecules22050838
[15] G. Lazzara, G. Cavallaro, A. Panchal, R. Fakhrullin, A. Stavitskaya, V. Vinokurov, Y. Lvov, An assembly of organic-inorganic composites using halloysite clay nanotubes, Curr. Opin. Colloid Interface Sci. 35 (2018) 42-50. https://doi.org/10.1016/j.cocis.2018.01.002
[16] E.P. Giannelis, Polymer layered silicate nanocomposites, Adv. Mater. 8 (1996) 29-35. https://doi.org/10.1002/adma.19960080104
[17] A.H. Ambre, K.S. Katti, D.R. Katti, Nanoclay based composite scaffolds for bone tissue engineering applications, J. Nanotechnol. Eng. Med. 1 (2010) 1-9. https://doi.org/10.1115/1.4002149
[18] M.I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients, Appl. Clay Sci. 47 (2010) 171-181. https://doi.org/10.1016/j.clay.2009.10.016
[19] S. Shahidi, M. Ghoranneviss, Effect of plasma pretreatment followed by nanoclay loading on flame retardant properties of cotton fabric, J. Fusion Energy. 33 (2014) 88-95. https://doi.org/10.1007/s10894-013-9645-6
[20] E. Cudjoe, S. Khani, A.E. Way, M.J.A. Hore, J. Maia, S.J. Rowan, Biomimetic reversible heat-stiffening polymer nanocomposites, ACS Cent. Sci. 3 (2017) 886-894. https://doi.org/10.1021/acscentsci.7b00215
[21] V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: A review, Polymer (Guildf). 69 (2015) 369-383. https://doi.org/10.1016/j.polymer.2015.04.086
[22] R. Shah, A. Kausar, B. Muhammad, S. Shah, Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: A review, Polym. – Plast. Technol. Eng. 54 (2015) 173-183. https://doi.org/10.1080/03602559.2014.955202
[23] Y. Zhang, S.-J. Park, In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications, Compos. Part A Appl. Sci. Manuf. 112 (2018) 40-48. https://doi.org/10.1016/j.compositesa.2018.06.004
[24] A. Abdelraheem, A.H. El-Shazly, M.F. Elkady, Synthesis and characterization of intercalated polyaniline-clay nanocomposite using supercritical CO2, AIP Conf. Proc. 1968 (2018). https://doi.org/10.1063/1.5039186
[25] L.A. Utracki, M.R. Kamal, Clay-containing polymeric nanocomposites, Arab. J. Sci. Eng. 27 (2002).
[26] U.U. Ozkose, C. Altinkok, O. Yilmaz, O. Alpturk, M.A. Tasdelen, In-situ preparation of poly(2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization, Eur. Polym. J. 88 (2017) 586-593. https://doi.org/10.1016/j.eurpolymj.2016.07.004
[27] A. Saad, K. Jlassi, M. Omastová, M.M. Chehimi, Clay/conductive polymer nanocomposites, in: K. Jlassi, M.M. Chehimi, S. Thomas (Eds.), Clay-polymer nanocomposites, Elsevier, 2017: pp. 199-237. https://doi.org/10.1016/B978-0-323-46153-5.00006-9
[28] Z. Cherifi, B. Boukoussa, A. Zaoui, M. Belbachir, R. Meghabar, Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization, Ultrason. Sonochem. 48 (2018) 188-198. https://doi.org/10.1016/j.ultsonch.2018.05.027
[29] V.S. Vo, S. Mahouche-Chergui, J. Babinot, V.H. Nguyen, S. Naili, B. Carbonnier, Photo-induced SI-ATRP for the synthesis of photoclickable intercalated clay nanofillers, RSC Adv. 6 (2016) 89322-89327. https://doi.org/10.1039/C6RA14724K
[30] M. Guerrouache, S. Mahouche-Chergui, M.M. Chehimi, B. Carbonnier, Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol-yne click photopatterning approach, Chem. Commun. 48 (2012) 7486-7488. https://doi.org/10.1039/c2cc33134a
[31] V. Georgiadou, C. Kokotidou, B. Le Droumaguet, B. Carbonnier, T. Choli-Papadopoulou, C. Dendrinou-Samara, Oleylamine as a beneficial agent for the synthesis of CoFe2O4 nanoparticles with potential biomedical uses, J. Chem. Soc. Dalt. Trans. 43 (2014) 6377-6388. https://doi.org/10.1039/C3DT53179A
[32] A.K. Nikolaidis, D.S. Achilias, G.P. Karayannidis, Synthesis and characterization of PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization, Ind. Eng. Chem. Res. 50 (2011) 571-579. https://doi.org/10.1021/ie100186a
[33] S. Dadashi-Silab, M. Atilla Tasdelen, Y. Yagci, Photoinitiated atom transfer radical polymerization: Current status and future perspectives, J. Polym. Sci. Part A Polym. Chem. 52 (2014) 2878-2888. https://doi.org/10.1002/pola.27327
[34] A. Chakrabarty, L. Zhang, K.A. Cavicchi, R.A. Weiss, N.K. Singha, Tailor-made fluorinated copolymer/clay nanocomposite by cationic RAFT assisted pickering miniemulsion polymerization, Langmuir. 31 (2015) 12472-12480. https://doi.org/10.1021/acs.langmuir.5b01799
[35] M.A. Tasdelen, J. Kreutzer, Y. Yagci, In situ synthesis of polymer/clay nanocomposites by living and controlled/ living polymerization, Macromol. Chem. Phys. 211 (2010) 279-285. https://doi.org/10.1002/macp.200900590
[36] D. Schmidt, D. Shah, E.P. Giannelis, New advances in polymer/layered silicate nanocomposites, Curr. Opin. Solid State Mater. Sci. 6 (2002) 205-212. https://doi.org/10.1016/S1359-0286(02)00049-9
[37] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
[38] D. Senbet, Measuring the impact and International transmission of monetary policy: A factor-augmented vector autoregressive (favar) approach, Eur. J. Econ. Financ. Adm. Sci. 7 (2008) 121-143.
[39] V.-S. Vo, S. Mahouche-Chergui, V.-H. Nguyen, S. Naili, N.K. Singha, B. Carbonnier, Chemical and photochemical routes toward tailor-made polymer-clay nanocomposites: Recent progress and future prospects, in: K. Jlassi, M.M. Chehimi, S. Thomas (Eds.), Clay-Polymer Nanocomposites, Elsevier, 2017: pp. 145-197. https://doi.org/10.1016/B978-0-323-46153-5.00005-7
[40] Y. Huang, K. Yang, J.Y. Dong, Copolymerization of ethylene and 10-undecen-1-ol using a montmorillonite-intercalated metallocene catalyst: Synthesis of polyethylene/montmorillonite nanocomposites with enhanced structural stability, Macromol. Rapid Commun. 27 (2006) 1278-1283. https://doi.org/10.1002/marc.200600131
[41] S. Abedi, M. Abdouss, A review of clay-supported Ziegler-Natta catalysts for production of polyolefin/clay nanocomposites through in situ polymerization, Appl. Catal. A Gen. 475 (2014) 386-409. https://doi.org/10.1016/j.apcata.2014.01.028
[42] M. Asensio, M. Herrero, K. Núñez, R. Gallego, J.C. Merino, J.M. Pastor, In situ polymerization of isotactic polypropylene sepiolite nanocomposites and its copolymers by metallocene catalysis, Eur. Polym. J. 100 (2018) 278-289. https://doi.org/10.1016/j.eurpolymj.2018.01.034
[43] Z. Salmi, K. Benzarti, M.M. Chehimi, Diazonium cation-exchanged clay: An efficient, unfrequented route for making clay/polymer nanocomposites, Langmuir. 29 (2013) 13323-13328. https://doi.org/10.1021/la402710r
[44] Z. Yang, H. Peng, W. Wang, T. Liu, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites, J. Appl. Polym. Sci. 116 (2010) 2658-2667. https://doi.org/10.1002/app.31787
[45] L. Zang, J. Qiu, C. Yang, E. Sakai, Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization, Sci. Rep. 6 (2016) 1-12. https://doi.org/10.1038/s41598-016-0001-8
[46] M. Herrero, K. Núñez, R. Gallego, J.C. Merino, J.M. Pastor, Control of molecular weight and polydispersity in polyethylene/needle-like shaped clay nanocomposites obtained by in situ polymerization with metallocene catalysts, Eur. Polym. J. 75 (2016) 125-141. https://doi.org/10.1016/j.eurpolymj.2015.12.005
[47] D.E. Kherroub, M. Belbachir, S. Lamouri, Synthesis of poly(furfuryl alcohol)/montmorillonite nanocomposites by direct in-situ polymerization, Bull. Mater. Sci. 38 (2015) 57-63. https://doi.org/10.1007/s12034-014-0818-3
[48] B.R. Prado, J.R. Bartoli, Synthesis and characterization of PMMA and organic modified montmorilonites nanocomposites via in situ polymerization assisted by sonication, Appl. Clay Sci. 160 (2018) 132-143. https://doi.org/10.1016/j.clay.2018.02.035
[49] S. Sharma, M. Kumar Poddar, V.S. Moholkar, Enhancement of thermal and mechanical properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization, Ultrason. Sonochem. 36 (2017) 212-225. https://doi.org/10.1016/j.ultsonch.2016.11.029
[50] R.S. Cardoso, V.O. Aguiar, M. de Fátima V Marques, Masterbatches of polypropylene/clay obtained by in situ polymerization and melt-blended with commercial polypropylene, J. Compos. Mater. 51 (2017) 3547-3556. https://doi.org/10.1177/0021998317690444
[51] J. Hua, J. Liu, X. Wang, Z. Yue, H. Yang, J. Geng, A. Ding, Structure and properties of a cis-1,4-polybutadiene/organic montmorillonite nanocomposite prepared via in situ polymerization, J. Macromol. Sci. Part B Phys. 56 (2017) 451-461. https://doi.org/10.1080/00222348.2017.1327318
[52] C. Dietlin, S. Schweizer, P. Xiao, J. Zhang, F. Morlet-Savary, B. Graff, J.P. Fouassier, J. Lalevée, Photopolymerization upon LEDs: New photoinitiating systems and strategies, Polym. Chem. 6 (2015) 3895-3912. https://doi.org/10.1039/C5PY00258C
[53] M. Chen, M. Zhong, J.A. Johnson, Light-controlled radical polymerization: mechanisms, methods, and applications, Chem. Rev. 116 (2016) 10167-10211. https://doi.org/10.1021/acs.chemrev.5b00671
[54] K. Jlassi, S. Chandran, M. Mičušik, M. Benna-Zayani, Y. Yagci, S. Thomas, M.M. Chehimi, Poly(glycidyl methacrylate)-grafted clay nanofiller for highly transparent and mechanically robust epoxy composites, Eur. Polym. J. 72 (2015) 89-101. https://doi.org/10.1016/j.eurpolymj.2015.09.004
[55] S. Shanmugam, C. Boyer, Stereo-, Temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers, J. Am. Chem. Soc. 137 (2015) 9988-9999. https://doi.org/10.1021/jacs.5b05903
[56] M. Chen, J.A. Johnson, Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques, Chem. Commun. 51 (2015) 6742-6745. https://doi.org/10.1039/C5CC01562F
[57] M. Arslan, M.A. Tasdelen, Polymer nanocomposites via click chemistry reactions, Polymers (Basel). 9 (2017). https://doi.org/10.3390/polym9100499
[58] Z. Zhang, P. Zhang, Y. Wang, W. Zhang, Recent advances in organic-inorganic well-defined hybrid polymers using controlled living radical polymerization techniques, Polym. Chem. 7 (2016) 3950-3976. https://doi.org/10.1039/C6PY00675B
[59] P. Yadav, S. Chacko, G. Kumar, R. Ramapanicker, V. Verma, Click chemistry route to covalently link cellulose and clay, Cellulose. 22 (2015) 1615-1624. https://doi.org/10.1007/s10570-015-0594-2
[60] Y. Zou, L. Zhang, L. Yang, F. Zhu, M. Ding, F. Lin, Z. Wang, Y. Li, “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering, J. Control. Release. 273 (2018) 160-179. https://doi.org/10.1016/j.jconrel.2018.01.023
[61] P.B. Zetterlund, S.C. Thickett, S. Perrier, E. Bourgeat-Lami, M. Lansalot, Controlled/living radical polymerization in dispersed systems: an update, Chem. Rev. 115 (2015) 9745-9800. https://doi.org/10.1021/cr500625k
[62] N. Ballard, M. Salsamendi, P. Carretero, J.M. Asua, An investigation into the nature and potential of in-situ surfactants for low energy miniemulsification, J. Colloid Interface Sci. 458 (2015) 69-78. https://doi.org/10.1016/j.jcis.2015.07.041
[63] Y. Wang, S. Dadashi-Silab, K. Matyjaszewski, Photoinduced miniemulsion atom transfer radical polymerization, ACS Macro Lett. 7 (2018) 720-725. https://doi.org/10.1021/acsmacrolett.8b00371
[64] F. Zhang, S. Li, G.D. Electrolysis, L. Yan, Y. Mengqi, Y. Reyes, Synthesis of polymer hybrid latex poly ( methyl methacrylate-co-butyl acrylate ) with organo montmorillonite via miniemulsion polymerization method for barrier paper, J. Phys.: Conf. Ser. 985 (2017) 012029. https://doi.org/10.1088/1742-6596/910/1/012029
[65] K. Buruga, J.T. Kalathi, Fabrication of γ-MPS-modified HNT-PMMA nanocomposites by ultrasound-assisted miniemulsion polymerization, JOM. 70 (2018) 1307-1312. https://doi.org/10.1007/s11837-018-2829-9
[66] A. Gurses, Introduction to polymer-Clay nanocomposites, Jenny Stanford Publishing, 2015. https://doi.org/10.1201/b18716
[67] S. Merritt, C. Wan, B. Shollock, S. Patole, D.M. Haddleton, Polymer/Graphene Nanocomposites for Food Packaging, in: G. Cirillo, M.A. Kozlowski, U.G. Spizzirri (Eds.), Compos. Mater. Food Packag., John Wiley & Sons, 2018, pp. 251-267. https://doi.org/10.1002/9781119160243.ch8
[68] F.Y. Fayc, Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications, Polym. Bull. 72 (2015) 235-254. https://doi.org/10.1007/s00289-014-1269-0
[69] J.M. Kim, M.H. Lee, J.A. Ko, D.H. Kang, H. Bae, H.J. Park, Influence of food with high moisture content on oxygen barrier property of polyvinyl alcohol (PVA)/vermiculite nanocomposite coated multilayer packaging film, J. Food Sci. 83 (2018) 349-357. https://doi.org/10.1111/1750-3841.14012
[70] A.Y. Malkin, A. Isayev, Applications of rheology, in: A.Y. Malkin, A. Isayev (Eds.), Rheology, ChemTec Publishing, 2017, pp. 377-432. https://doi.org/10.1016/B978-1-927885-21-5.50012-6
[71] J. Yang, S. Tighe, A review of advances of nanotechnology in asphalt mixtures, Procedia-Soc. Behav. Sci. 96 (2013) 1269-1276. https://doi.org/10.1016/j.sbspro.2013.08.144
[72] F. Guo, S. Aryana, An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery, Fuel. 186 (2016) 430-442. https://doi.org/10.1016/j.fuel.2016.08.058
[73] A. Kara, N. Tekin, A. Alan, A. Şafaklı, Physicochemical parameters of Hg(II) ions adsorption from aqueous solution by sepiolite/poly(vinylimidazole), J. Environ. Chem. Eng. 4 (2016) 1642-1652. https://doi.org/10.1016/j.jece.2016.02.028
[74] X. Liu, C. Cheng, C. Xiao, D. Shao, Z. Xu, J. Wang, S. Hu, X. Li, W. Wang, Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution, Appl. Surf. Sci. 411 (2017) 331-337. https://doi.org/10.1016/j.apsusc.2017.03.095
[75] X. Wang, Y. Du, J. Luo, B. Lin, J.F. Kennedy, Chitosan/organic rectorite nanocomposite films: Structure, characteristic and drug delivery behaviour, Carbohydr. Polym. 69 (2007) 41-49. https://doi.org/10.1016/j.carbpol.2006.08.025
[76] K. Fukushima, D. Tabuani, M. Arena, M. Gennari, G. Camino, Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites, React. Funct. Polym. 73 (2013) 540-549. https://doi.org/10.1016/j.reactfunctpolym.2013.01.003
[77] H. Xiang, M. Xia, A. Cunningham, W. Chen, B. Sun, M. Zhu, Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels, J. Mech. Behav. Biomed. Mater. 72 (2017) 74-81. https://doi.org/10.1016/j.jmbbm.2017.04.026
[78] G. Kapusetti, N. Misra, V. Singh, S. Srivastava, P. Roy, K. Dana, P. Maiti, Bone cement based nanohybrid as a super biomaterial for bone healing, J. Mater. Chem. B. 2 (2014) 3984-3997. https://doi.org/10.1039/C4TB00501E
[79] S. Noori, M. Kokabi, Z.M. Hassan, Nanoclay enhanced the mechanical properties of poly(vinyl alcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing, Procedia Mater. Sci. 11 (2015) 152-156. https://doi.org/10.1016/j.mspro.2015.11.023
[80] G. Sandri, C. Aguzzi, S. Rossi, M.C. Bonferoni, G. Bruni, C. Boselli, A.I. Cornaglia, F. Riva, C. Viseras, C. Caramella, F. Ferrari, Halloysite and chitosan oligosaccharide nanocomposite for wound healing, Acta Biomater. 57 (2017) 216-224. https://doi.org/10.1016/j.actbio.2017.05.032
[81] M. Liu, Y. Shen, P. Ao, L. Dai, Z. Liu, C. Zhou, The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes, RSC Adv. 4 (2014) 23540-23553. https://doi.org/10.1039/C4RA02189D
[82] H.A. Heydary, E. Karamian, E. Poorazizi, A. Khandan, J. Heydaripour, A novel nano-fiber of iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications, Procedia Mater. Sci. 11 (2015) 176-182. https://doi.org/10.1016/j.mspro.2015.11.079
[83] M.W. Sabaa, H.M. Abdallah, N.A. Mohamed, R.R. Mohamed, Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites, Mater. Sci. Eng. C. 56 (2015) 363-373. https://doi.org/10.1016/j.msec.2015.06.043
[84] T. Ge, J.T. Kalathi, J.D. Halverson, G.S. Grest, M. Rubinstein, Nanoparticle motion in entangled melts of linear and nonconcatenated ring polymers, Macromolecules. 50 (2017) 1749-1754. https://doi.org/10.1021/acs.macromol.6b02632
[85] S. Pacelli, P. Paolicelli, G. Moretti, S. Petralito, S. Di Giacomo, A. Vitalone, M.A. Casadei, Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications, Eur. Polym. J. 77 (2016) 114-123. https://doi.org/10.1016/j.eurpolymj.2016.02.007
[86] S. Karnik, U.M. Jammalamadaka, K.K. Tappa, R. Giorno, D.K. Mills, Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications, Heliyon. 2 (2016) e00072. https://doi.org/10.1016/j.heliyon.2016.e00072
[87] J.-H. Yang, J.-H. Lee, H.-J. Ryu, A.A. Elzatahry, Z.A. Alothman, J.-H. Choy, Drug-clay nanohybrids as sustained delivery systems, Appl. Clay Sci. 130 (2016) 20-32. https://doi.org/10.1016/j.clay.2016.01.021
[88] M. Roozbahani, M. Kharaziha, R. Emadi, pH sensitive dexamethasone encapsulated laponite nanoplatelets: Release mechanism and cytotoxicity, Int. J. Pharm. 518 (2017) 312-319. https://doi.org/10.1016/j.ijpharm.2017.01.001
[89] A. Carrero, R. van Grieken, I. Suarez, B. Paredes, Development of a new synthetic method based on in situ strategies for polyethylene/clay composites, J. Appl. Polym. Sci. 126 (2012) 987-997. https://doi.org/10.1002/app.36830
[90] F.B. Zeynabad, R. Salehi, M. Mahkam, Design of pH-responsive antimicrobial nanocomposite as dual drug delivery system for tumor therapy, Appl. Clay Sci. 141 (2017) 23-35. https://doi.org/10.1016/j.clay.2017.02.015
[91] K.M. Rao, S. Nagappan, D.J. Seo, C.-S. Ha, pH sensitive halloysite-sodium hyaluronate/poly(hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery, Appl. Clay Sci. 97-98 (2014) 33-42. https://doi.org/10.1016/j.clay.2014.06.002