Biomedical uses of Enzymes Immobilized by Nanoparticles


Biomedical uses of Enzymes Immobilized by Nanoparticles

Syed Raza Ali Naqvi, Noman Razzaq, Tahseen Abbas, Ameer Fawad Zahoor, Matloob Ahmad, Amjad Hussain, Sadaf Ul Hassan

Immobilized enzymes are now a significant and appropriate area of modern technologies. Immobilization of enzymes on nanoparticles (NPs) especially magnetic nanoparticles (MNPs) not only increase the stability of the enzymes by protecting the active site but also facilitates the separation mode. Immobilized technology is considered effective in context of running cost to exercise immobilized enzymes technique. Nowadays, variety of magnetic nanoparticles are available such as chitin-chitosan magnetic nanoparticles, Fe3O4 magnetic nanoparticles, bacteriophages T4 capsid novozym-435 etc. which are quite fit for loading enzymes and to use fruitfully. The main focus in this piece of work is that how immobilized enzymes are helpful in different biomedical uses and what kind of enzymes and nanoparticles could be hyphenated to take advantage in health care sectors. Different method of enzymes immobilization will also be discussed in details including both physical methods and chemical methods of loading enzymes on nanoparticles.

Enzymes, Magnetic Nanoparticles, Immobilized Enzymes, Applications

Published online , 25 pages

Citation: Syed Raza Ali Naqvi, Noman Razzaq, Tahseen Abbas, Ameer Fawad Zahoor, Matloob Ahmad, Amjad Hussain, Sadaf Ul Hassan, Biomedical uses of Enzymes Immobilized by Nanoparticles, Materials Research Foundations, Vol. 126, pp 215-239, 2022


Part of the book on Nanomaterial-Supported Enzymes

[1] O.M. Darwesh, S.S. Ali, I.A. Matter, T. Elsamahy, Y.A. Mahmoud, Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications, Methods Enzymol. 630 (2020) 481-502.
[2] Z. Ashkan, R. Hemmati, A. Homaei, A. Dinari, M. Jamlidoost, A. Tashakor, Immobilization of enzymes on nanoinorganic support materials: An update, Int J Biol Macromol. 168 (2021) 708-721.
[3] S.A.R. Naqvi, K. Drlica, Fluoroquinolones as imaging agents for bacterial infection, Dalton Trans. 46 (2017) 14452-14460.
[4] M.J. Cooney, Kinetic measurements for enzyme immobilization, Methods Mol Biol. 679 (2011) 207-225.
[5] S. Keller, S.P. Teora, G.X. Hu, M. Nijemeisland, D.A. Wilson, High-Throughput Design of Biocompatible Enzyme-Based Hydrogel Microparticles with Autonomous Movement, Angewandte Chemie. 57 (2018) 9814-9817.
[6] D.-M. Liu, J. Chen, Y.-P. Shi, Advances on methods and easy separated support materials for enzymes immobilization, TrAC Trends in Analytical Chemistry. 102 (2018) 332-342.
[7] S.M.A. Shah, S.A.R. Naqvi, N. Munir, S. Zafar, M. Akram, J. Nisar, Antihypertensive and Antihyperlipidemic Activity of Aqueous Methanolic Extract of Rauwolfia Serpentina in Albino Rats, Dose-Response. 18 (2020) 1559325820942077.
[8] H. Vaghari, H. Jafarizadeh-Malmiri, M. Mohammadlou, A. Berenjian, N. Anarjan, N. Jafari, S. Nasiri, Application of magnetic nanoparticles in smart enzyme immobilization, Biotechnol Lett. 38 (2016) 223-233.
[9] T.A. Sherazi, T. Rehman, S.A.R. Naqvi, A.J. Shaikh, S.A. Shahzad, G. Abbas, R. Raza, A. Waseem, Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting, Applied Surface Science. 359 (2015) 593-601.
[10] T.A. Sherazi, S. Zahoor, R. Raza, A.J. Shaikh, S.A.R. Naqvi, G. Abbas, Y. Khan, S. Li, Guanidine functionalized radiation induced grafted anion-exchange membranes for solid alkaline fuel cells, International Journal of Hydrogen Energy. 40 (2015) 786-796.
[11] A. Rodriguez-Abetxuko, D. Sánchez-deAlcázar, P. Muñumer, A. Beloqui, Tunable Polymeric Scaffolds for Enzyme Immobilization, Frontiers in Bioengineering and Biotechnology. 8 (2020).
[12] U.T. Bornscheuer, Immobilizing Enzymes: How to Create More Suitable Biocatalysts, Angewandte Chemie International Edition. 42 (2003) 3336-3337.
[13] A. Arsalan, H. Younus, Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles, Int J Biol Macromol. 118 (2018) 1833-1847.
[14] T. Sherazi, R. Ullah, S. Naqvi, M.A. Rasheed, G. Ali, A. Shah, Y. Khan, Electrodeposition-assisted formation of anodized TiO2-CuO heterojunctions for solar water splitting, Applied Nanoscience. 11 (2020) 1-12.
[15] S.A. Shahzad, A. Sarfraz, M. Yar, Z.A. Khan, S.A.R. Naqvi, S. Naz, N.A. Khan, U. Farooq, R. Batool, M. Ali, Synthesis, evaluation of thymidine phosphorylase and angiogenic inhibitory potential of ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future anticancer drugs, Bioorganic chemistry. 100 (2020) 103876.
[16] M. Sattar, H. Anwar, M. Faisal, G. Hussain, S. Irfan, A. Rasul, I. Mukhtar, M.U. Sohail, H. Muzaffar, A. Shaukat, S. Naqvi, S. Naqvi, Synergetic effects of GOS and Cu +2 nanoparticles as prebiotics on biochemical and metabolic hormonal profile in alloxan induced diabetic rats model, Pakistan journal of pharmaceutical sciences. 33 (2020) 1297-1302.
[17] M. Jamal, M. Khosa, M. Rashad, A. Mansha, S. Naqvi, Volumetric and Acoustic Behavior of Sodium Cyclamate in Aqueous System from 293.15 K to 318.15 K, Journal of Solution Chemistry. 45 (2016).
[18] L. Carneiro, R.J. Ward, Functionalization of paramagnetic nanoparticles for protein immobilization and purification, Anal Biochem. 540-541 (2018) 45-51.
[19] M. Bilal, Y. Zhao, T. Rasheed, H.M.N. Iqbal, Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review, Int J Biol Macromol. 120 (2018) 2530-2544.
[20] M.F. Tahir, S.A. Bukhari, F. Anjum, M. Qasim, H. Anwar, S.A.R. Naqvi, Purification and modification of Cordia myxa gum to enhance its nutraceutical attribute as binding agent, Pakistan journal of pharmaceutical sciences. 32 (2019) 2245-2250.
[21] D.-M. Liu, J. Chen, Y.-P. Shi, Advances on methods and easy separated support materials for enzymes immobilization, J TrAC Trends in Analytical Chemistry. 102 (2018) 332-342.
[22] L. Zhang, P. Wang, C. Wang, Y. Wu, X. Feng, H. Huang, L. Ren, B.-F. Liu, S. Gao, X.J.S.r. Liu, Bacteriophage T4 capsid as a nanocarrier for Peptide-N-Glycosidase F immobilization through self-assembly, 9 (2019) 1-13.
[23] W. Tischer, V. Kasche, Immobilized enzymes: crystals or carriers?, Trends Biotechnol. 17 (1999) 326-335.
[24] A. Bari, Z.A. Khan, S.A. Shahzad, S.A. Raza Naqvi, S.A. Khan, H. Amjad, A. Iqbal, M. Yar, Design and syntheses of 7-nitro-2-aryl-4H-benzo[d][1,3]oxazin-4-ones as potent anticancer and antioxidant agents, Journal of Molecular Structure. 1214 (2020) 128252.
[25] E.D. Yushkova, E.A. Nazarova, A.V. Matyuhina, A.O. Noskova, D.O. Shavronskaya, V.V. Vinogradov, N.N. Skvortsova, E.F. Krivoshapkina, Application of Immobilized Enzymes in Food Industry, J Agric Food Chem. 67 (2019) 11553-11567.
[26] T. Akkas, A. Zakharyuta, A. Taralp, C.W. Ow-Yang, Cross-linked enzyme lyophilisates (CLELs) of urease: A new method to immobilize ureases, Enzyme Microb Technol. 132 (2020) 109390.
[27] M. Sharifi, A.Y. Karim, N. Mustafa Qadir Nanakali, A. Salihi, F.M. Aziz, J. Hong, R.H. Khan, A.A. Saboury, A. Hasan, O.K. Abou-Zied, M. Falahati, Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery, J Biomol Struct Dyn. 38 (2020) 2746-2762.
[28] M. Hoarau, S. Badieyan, E.N.G. Marsh, Immobilized enzymes: understanding enzyme – surface interactions at the molecular level, Org Biomol Chem. 15 (2017) 9539-9551.
[29] S.A. Naqvi, J.K. Sosabowski, S.A. Nagra, M.M. Ishfaq, S.J. Mather, T. Matzow, Radiopeptide internalisation and externalization assays: cell viability and radioligand integrity, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine. 69 (2011) 68-74.
[30] R.A. Wahab, N. Elias, F. Abdullah, S.K. Ghoshal, On the taught new tricks of enzymes immobilization: An all-inclusive overview, J Reactive Functional Polymers. 152 (2020) 104613.
[31] T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: a review, Adsorption. 20 (2014) 801-821.
[32] S.A. Bukhari, N. Farah, G. Mustafa, S. Mahmood, S.A.R. Naqvi, Magneto-Priming Improved Nutraceutical Potential and Antimicrobial Activity of Momordica charantia L. Without Affecting Nutritive Value, Applied Biochemistry and Biotechnology. 188 (2019) 878-892.
[33] S.A. Shahzad, M. Yar, M. Bajda, L. Shahzadi, Z.A. Khan, S.A.R. Naqvi, S. Mutahir, N. Mahmood, K.M. Khan, Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives, Bioorganic Chemistry. 60 (2015) 37-41.
[34] M. Yaseen, Z. Farooq, M.H.R. Mahmood, S.A. Ahmad, S. Nazir, K.M. Anjum, S.A.R. Naqvi, Synthesis of Novel Symmetric Porphyrin Schiff Base Dimers by Solid-Liquid Reaction Methodology, Journal of Heterocyclic Chemistry. 56 (2019) 1520-1529.
[35] M. Bilal, S. Mehmood, T. Rasheed, H.M.N. Iqbal, Bio-Catalysis and Biomedical Perspectives of Magnetic Nanoparticles as Versatile Carriers, 5 (2019) 42.
[36] S.A. Naqvi, T. Matzow, C. Finucane, S.A. Nagra, M.M. Ishfaq, S.J. Mather, J. Sosabowski, Insertion of a lysosomal enzyme cleavage site into the sequence of a radiolabeled neuropeptide influences cell trafficking in vitro and in vivo, Cancer biotherapy & radiopharmaceuticals. 25 (2010) 89-95.
[37] Z. Khan, S. Shahzad, A. Anjum, A. Bale, S. Naqvi, Synthetic approaches toward the reserpine, Synthetic Communications. 48 (2018) 1-20.
[38] H. Orhan, D. Aktaş Uygun, Immobilization of L-Asparaginase on Magnetic Nanoparticles for Cancer Treatment, Appl Biochem Biotechnol. 191 (2020) 1432-1443.
[39] M. Chang, Y.J. Chang, P.Y. Chao, Q. Yu, Exosome purification based on PEG-coated Fe3O4 nanoparticles, PLoS One. 13 (2018) e0199438.
[40] M. Basit, M.H. Rasool, S.A.R. Naqvi, M. Waseem, B. Aslam, Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities, Pakistan journal of pharmaceutical sciences. 31 (2018) 251-256.
[41] A. Ulu, S.A.A. Noma, S. Koytepe, B. Ates, Chloro-Modified Magnetic Fe(3)O(4)@MCM-41 Core-Shell Nanoparticles for L-Asparaginase Immobilization with Improved Catalytic Activity, Reusability, and Storage Stability, Appl Biochem Biotechnol. 187 (2019) 938-956.
[42] R. Dhankhar, V. Gupta, S. Kumar, R.K. Kapoor, P. Gulati, Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment, Appl Microbiol Biotechnol. 104 (2020) 2857-2869.
[43] M. Yar, L.R. Sidra, E. Pontiki, N. Mushtaq, R. Nasar, I. Khan, N. Mahmood, S. Naqvi, Z. Khan, S. Shahzad, Synthesis, in vitro lipoxygenase inhibition, docking study and thermal stability analyses of novel indole derivatives, Journal of the Iranian Chemical Society. 11 (2014).
[44] M. Yar, M. Bajda, R.A. Mehmood, L.R. Sidra, N. Ullah, L. Shahzadi, M. Ashraf, T. Ismail, S.A. Shahzad, Z.A. Khan, S.A. Naqvi, N. Mahmood, Design and Synthesis of New Dual Binding Site Cholinesterase Inhibitors: in vitro Inhibition Studies with in silico Docking, Letters in drug design & discovery. 11 (2014) 331-338.
[45] M. Asif, S.A.R. Naqvi, T.A. Sherazi, M. Ahmad, A.F. Zahoor, S.A. Shahzad, Z. Hussain, H. Mahmood, N. Mahmood, Antioxidant, antibacterial and antiproliferative activities of pumpkin (cucurbit) peel and puree extracts – an in vitro study, Pakistan journal of pharmaceutical sciences. 30 (2017) 1327-1334.
[46] A. Basso, S. Serban, Industrial applications of immobilized enzymes-A review, Molecular Catalysis. 479 (2019) 110607.
[47] M.L. Verma, S. Kumar, A. Das, J.S. Randhawa, M.J.E.C.L. Chamundeeswari, Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications, 18 (2020) 315-323.
[48] S. Singh, Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity, Toxicol Mech Methods. 29 (2019) 300-311.
[49] P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications, Drug Discov Today. 22 (2017) 1825-1834.
[50] R. Khan, A. Kaushik, P.R. Solanki, A.A. Ansari, M.K. Pandey, B.D. Malhotra, Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor, Anal Chim Acta. 616 (2008) 207-213.
[51] M. Najafi, S. Bukhari, S. Nagra, S. Naqvi, The Substituent and Solvent Effects on the Antioxidant Activity of the Ferulic Acid Derivations, Journal of the Chemical Society of Pakistan. 36 (2014) 268-276.
[52] B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M. Salvador Fernandez, A. Talone, G. Muscas, D. Peddis, Co-doped MnFe(2)O(4) nanoparticles: magnetic anisotropy and interparticle interactions, Beilstein J Nanotechnol. 10 (2019) 856-865.