Enzyme Immobilized Nanoparticles Towards Biosensor Fabrication


Enzyme Immobilized Nanoparticles Towards Biosensor Fabrication

Jaison Jeevanandam, Sharadwata Pan, Michael K. Danquah

In recent times, nanomaterials with semiconductor properties are introduced as a potential transducer in biosensors, which can be credited to their intrinsic, elevated surface-to-volume proportion, enhanced sensitivity, and improved surface properties. The surface properties of nanomaterials have made them a significant transducer matrix towards the immobilization of bioreceptors, which eventually enhances the identification threshold and the biosensor sensing capability. Several nanomaterials, such as polymer, metal oxide, metal and carbon-based, as well as nanocomposites, are used towards transducer manufacturing, eventually being incorporated in the biosensors. The current chapter lays an outline with respect to biosensors that are fabricated with nanomaterials as a transducer, where enzymes acting as a bioreceptor, are immobilized on their surface. In addition, the biosensing mechanisms of the enzyme immobilized nanomaterials, their efficiency, detection limit, and sensitivity, are also discussed.

Biosensor, Enzyme, Immobilization, Nanoparticles, Biomolecules, Nanocomposites

Published online , 20 pages

Citation: Jaison Jeevanandam, Sharadwata Pan, Michael K. Danquah, Enzyme Immobilized Nanoparticles Towards Biosensor Fabrication, Materials Research Foundations, Vol. 126, pp 142-161, 2022

DOI: https://doi.org/10.21741/9781644901977-5

Part of the book on Nanomaterial-Supported Enzymes

[1] J.S. Wilson, Sensor technology handbook. 2004: Elsevier.
[2] M.A. Morales and J.M. Halpern, Guide to selecting a biorecognition element for biosensors, Bioconjugate chemistry, 29 (10) (2018) 3231-3239. https://doi.org/10.1021/acs.bioconjchem.8b00592
[3] N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, Introduction to biosensors, Essays in biochemistry, 60 (1) (2016) 1-8. https://doi.org/10.1042/EBC20150001
[4] I.-H. Cho, D.H. Kim, and S. Park, Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis, Biomaterials research, 24 (1) (2020) 1-12. https://doi.org/10.1186/s40824-019-0181-y
[5] C. Chen and J. Wang, Optical biosensors: An exhaustive and comprehensive review, Analyst, 145 (5) (2020) 1605-1628. https://doi.org/10.1039/C9AN01998G
[6] S. Mao and J. Chen, Graphene-based electronic biosensors, Journal of Materials Research, 32 (15) (2017) 2954-2965. https://doi.org/10.1557/jmr.2017.129
[7] M. Pohanka, The piezoelectric biosensors: principles and applications, Int. J. Electrochem. Sci, 12 (2017) 496-506. https://doi.org/10.20964/2017.01.44
[8] K. Cali, E. Tuccori, and K.C. Persaud, Gravimetric biosensors, Methods in Enzymology, 642 (2020) 435-468. https://doi.org/10.1016/bs.mie.2020.05.010
[9] S.A. Pullano, M. Greco, D.M. Corigliano, D.P. Foti, A. Brunetti, and A.S. Fiorillo, Cell-line characterization by infrared-induced pyroelectric effect, Biosensors and Bioelectronics, 140 (2019) 111338. https://doi.org/10.1016/j.bios.2019.111338
[10] V. Nabaei, R. Chandrawati, and H. Heidari, Magnetic biosensors: Modelling and simulation, Biosensors and Bioelectronics, 103 (2018) 69-86. https://doi.org/10.1016/j.bios.2017.12.023
[11] Q. Zhang, Y. Lu, S. Li, J. Wu, and Q. Liu, 20 – Peptide-based biosensors, in Peptide Applications in Biomedicine, Biotechnology and Bioengineering, S. Koutsopoulos, Editor. 2018, Woodhead Publishing. p. 565-601. https://doi.org/10.1016/B978-0-08-100736-5.00024-7
[12] V. Naresh and N. Lee, A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors, Sensors, 21 (4) (2021) 1109. https://doi.org/10.3390/s21041109
[13] J. Jeevanandam, A. Kaliyaperumal, M. Sundararam, and M.K. Danquah, Nanomaterials as toxic gas sensors and biosensors, in Nanosensor Technologies for Environmental Monitoring. 2020, Springer, Cham. p. 389-430. https://doi.org/10.1007/978-3-030-45116-5_13
[14] J. Jeevanandam and M.K. Danquah, Nanosensors for better diagnosis of health, in Nanofabrication for Smart Nanosensor Applications. 2020, Elsevier. p. 187-228. https://doi.org/10.1016/B978-0-12-820702-4.00008-8
[15] C. Acquah, Y.W. Chan, S. Pan, L.S. Yon, C.M. Ongkudon, H. Guo, and M.K. Danquah, Characterisation of aptamer-anchored poly(EDMA-co-GMA) monolith for high throughput affinity binding, Scientific Reports, 9 (1) (2019) 14501. https://doi.org/10.1038/s41598-019-50862-1
[16] C. Acquah, D. Agyei, I. Monney, S. Pan, and M.K. Danquah, Chapter 7 – Aptameric Sensing in Food Safety, in Food Control and Biosecurity, A.M. Holban and A.M. Grumezescu, Editors. 2018, Academic Press. p. 259-277. https://doi.org/10.1016/B978-0-12-811445-2.00007-6
[17] B. Purohit, P.R. Vernekar, N.P. Shetti, and P. Chandra, Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis, Sensors International, (2020) 100040. https://doi.org/10.1016/j.sintl.2020.100040
[18] N. Wongkaew, M. Simsek, C. Griesche, and A.J. Baeumner, Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective, Chemical reviews, 119 (1) (2018) 120-194. https://doi.org/10.1021/acs.chemrev.8b00172
[19] D.-M. Liu and C. Dong, Recent advances in nano-carrier immobilized enzymes and their applications, Process Biochemistry, 92 (2020) 464-475. https://doi.org/10.1016/j.procbio.2020.02.005
[20] A. Soussou, I. Gammoudi, F. Moroté, A. Kalboussi, T. Cohen-Bouhacina, C. Grauby-Heywang, and Z.M. Baccar, Efficient Immobilization of Tyrosinase Enzyme on Layered Double Hydroxide Hybrid Nanomaterials for Electrochemical Detection of Polyphenols, IEEE Sensors Journal, 17 (14) (2017) 4340-4348. https://doi.org/10.1109/JSEN.2017.2709342
[21] A. Majouga, M. Sokolsky-Papkov, A. Kuznetsov, D. Lebedev, M. Efremova, E. Beloglazkina, P. Rudakovskaya, M. Veselov, N. Zyk, Y. Golovin, N. Klyachko, and A. Kabanov, Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: Synthesis, purification and control of enzyme function by low-frequency magnetic field, Colloids and Surfaces B: Biointerfaces, 125 (2015) 104-109. https://doi.org/10.1016/j.colsurfb.2014.11.012
[22] Y. Lu, M. Yang, F. Qu, G. Shen, and R. Yu, Enzyme-functionalized gold nanowires for the fabrication of biosensors, Bioelectrochemistry, 71 (2) (2007) 211-216. https://doi.org/10.1016/j.bioelechem.2007.05.003
[23] D. Du, J. Wang, D. Lu, A. Dohnalkova, and Y. Lin, Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration, Analytical Chemistry, 83 (17) (2011) 6580-6585. https://doi.org/10.1021/ac2009977
[24] L.P. Datta, A. Chatterjee, K. Acharya, P. De, and M. Das, Enzyme responsive nucleotide functionalized silver nanoparticles with effective antimicrobial and anticancer activity, New Journal of Chemistry, 41 (4) (2017) 1538-1548. https://doi.org/10.1039/C6NJ02955H
[25] D.R. Bagal-Kestwal and B.-H. Chiang, Platinum nanoparticle-carbon nanotubes dispersed in gum Arabic-corn flour composite-enzymes for an electrochemical sucrose sensing in commercial juice, Ionics, 25 (11) (2019) 5551-5564. https://doi.org/10.1007/s11581-019-03091-5
[26] K. Korschelt, R. Ragg, C.S. Metzger, M. Kluenker, M. Oster, B. Barton, M. Panthöfer, D. Strand, U. Kolb, and M. Mondeshki, Glycine-functionalized copper (II) hydroxide nanoparticles with high intrinsic superoxide dismutase activity, Nanoscale, 9 (11) (2017) 3952-3960. https://doi.org/10.1039/C6NR09810J
[27] D. Chávez-García, K. Juárez-Moreno, C.H. Campos, J.B. Alderete, and G.A. Hirata, Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells, Journal of Materials Research, 33 (2) (2018) 191-200. https://doi.org/10.1557/jmr.2017.463
[28] P.M. Tiwari, K. Vig, V.A. Dennis, and S.R. Singh, Functionalized Gold Nanoparticles and Their Biomedical Applications, Nanomaterials, 1 (1) (2011) https://doi.org/10.3390/nano1010031
[29] M. Rani, U. Shanker, and A.K. Chaurasia, Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: Degradation of alizarin red S dye, Journal of Environmental Chemical Engineering, 5 (3) (2017) 2730-2739. https://doi.org/10.1016/j.jece.2017.05.026
[30] J. Singh, A. Roychoudhury, M. Srivastava, P.R. Solanki, D.W. Lee, S.H. Lee, and B.D. Malhotra, A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application, Nanoscale, 6 (2) (2014) 1195-1208. https://doi.org/10.1039/C3NR05043B
[31] R. Kant and B.D. Gupta, Fiber-Optic SPR Based Acetylcholine Biosensor Using Enzyme Functionalized Ta2O5 Nanoflakes for Alzheimer’s Disease Diagnosis, Journal of Lightwave Technology, 36 (18) (2018) 4018-4024. https://doi.org/10.1109/JLT.2018.2856924
[32] N. Verma, N. Kumar, L.S.B. Upadhyay, R. Sahu, and A. Dutt, Fabrication and Characterization of Cysteine-Functionalized Zinc Oxide Nanoparticles for Enzyme Immobilization, Analytical Letters, 50 (11) (2017) 1839-1850. https://doi.org/10.1080/00032719.2016.1245315
[33] G. Hojnik Podrepšek, Ž. Knez, and M. Leitgeb, Development of Chitosan Functionalized Magnetic Nanoparticles with Bioactive Compounds, Nanomaterials, 10 (10) (2020) https://doi.org/10.3390/nano10101913
[34] L. Wang, Y. Meng, Y. Zhang, C. Zhang, Q. Xie, and S. Yao, Photoelectrochemical aptasensing of thrombin based on multilayered gold nanoparticle/graphene-TiO2 and enzyme functionalized graphene oxide nanocomposites, Electrochimica Acta, 249 (2017) 243-252. https://doi.org/10.1016/j.electacta.2017.07.179
[35] G. Lai, H. Cheng, D. Xin, H. Zhang, and A. Yu, Amplified inhibition of the electrochemical signal of ferrocene by enzyme-functionalized graphene oxide nanoprobe for ultrasensitive immunoassay, Analytica Chimica Acta, 902 (2016) 189-195. https://doi.org/10.1016/j.aca.2015.11.014
[36] L. Zhou, T. Wang, Y. Bai, Y. Li, J. Qiu, W. Yu, and S. Zhang, Dual-amplified strategy for ultrasensitive electrochemical biosensor based on click chemistry-mediated enzyme-assisted target recycling and functionalized fullerene nanoparticles in the detection of microRNA-141, Biosensors and Bioelectronics, 150 (2020) 111964. https://doi.org/10.1016/j.bios.2019.111964
[37] S. Afreen, K. Muthoosamy, S. Manickam, and U. Hashim, Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors, Biosensors and Bioelectronics, 63 (2015) 354-364. https://doi.org/10.1016/j.bios.2014.07.044
[38] Y. Su, X. Zhou, Y. Long, and W. Li, Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide, Microchimica Acta, 185 (2) (2018) 114. https://doi.org/10.1007/s00604-017-2629-x
[39] H. Gonçalves, P.A.S. Jorge, J.R.A. Fernandes, and J.C.G. Esteves da Silva, Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation, Sensors and Actuators B: Chemical, 145 (2) (2010) 702-707. https://doi.org/10.1016/j.snb.2010.01.031
[40] L. Wang, L. Wei, Y. Chen, and R. Jiang, Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes, Journal of biotechnology, 150 (1) (2010) 57-63. https://doi.org/10.1016/j.jbiotec.2010.07.005
[41] M. Mass, L.S. Veiga, O. Garate, G. Longinotti, A. Moya, E. Ramón, R. Villa, G. Ybarra, and G. Gabriel, Fully Inkjet-Printed Biosensors Fabricated with a Highly Stable Ink Based on Carbon Nanotubes and Enzyme-Functionalized Nanoparticles, Nanomaterials, 11 (7) (2021) https://doi.org/10.3390/nano11071645
[42] H. Sharma and S. Mondal, Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine, International Journal of Molecular Sciences, 21 (17) (2020) https://doi.org/10.3390/ijms21176280
[43] H. Yoon, S. Ko, and J. Jang, Field-Effect-Transistor Sensor Based on Enzyme-Functionalized Polypyrrole Nanotubes for Glucose Detection, The Journal of Physical Chemistry B, 112 (32) (2008) 9992-9997. https://doi.org/10.1021/jp800567h
[44] D. Keller, A. Beloqui, M. Martínez-Martínez, M. Ferrer, and G. Delaittre, Nitrilotriacetic Amine-Functionalized Polymeric Core-Shell Nanoparticles as Enzyme Immobilization Supports, Biomacromolecules, 18 (9) (2017) 2777-2788. https://doi.org/10.1021/acs.biomac.7b00677
[45] R.M. Bezerra, R.R.C. Monteiro, D.M.A. Neto, F.F.M. da Silva, R.C.M. de Paula, T.L.G. de Lemos, P.B.A. Fechine, M.A. Correa, F. Bohn, L.R.B. Gonçalves, and J.C.S. dos Santos, A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus, Enzyme and Microbial Technology, 138 (2020) 109560. https://doi.org/10.1016/j.enzmictec.2020.109560
[46] L.Y. Jun, N.M. Mubarak, L.S. Yon, C.H. Bing, M. Khalid, P. Jagadish, and E.C. Abdullah, Immobilization of Peroxidase on Functionalized MWCNTs-Buckypaper/Polyvinyl alcohol Nanocomposite Membrane, Scientific Reports, 9 (1) (2019) 2215. https://doi.org/10.1038/s41598-019-39621-4
[47] S. Asmat, Q. Husain, and A. Azam, Lipase immobilization on facile synthesized polyaniline-coated silver-functionalized graphene oxide nanocomposites as novel biocatalysts: stability and activity insights, RSC Advances, 7 (9) (2017) 5019-5029. https://doi.org/10.1039/C6RA27926K
[48] M.B. Vineh, A.A. Saboury, A.A. Poostchi, and A. Ghasemi, Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO2 nanocomposite, International Journal of Biological Macromolecules, 164 (2020) 4403-4414. https://doi.org/10.1016/j.ijbiomac.2020.09.045
[49] Y. Bai, Q. Guo, J. Xiao, M. Zheng, D. Zhang, and J. Yang, An inkjet-printed smartphone-supported electrochemical biosensor system for reagentless point-of-care analyte detection, Sensors and Actuators B: Chemical, 346 (2021) 130447. https://doi.org/10.1016/j.snb.2021.130447
[50] K. Kunene, M. Sabela, S. Kanchi, and K. Bisetty, High Performance Electrochemical Biosensor for Bisphenol A Using Screen Printed Electrodes Modified with Multiwalled Carbon Nanotubes Functionalized with Silver-Doped Zinc Oxide, Waste and Biomass Valorization, 11 (3) (2020) 1085-1096. https://doi.org/10.1007/s12649-018-0505-5
[51] M.A. Akhtar, R. Batool, A. Hayat, D. Han, S. Riaz, S.U. Khan, M. Nasir, M.H. Nawaz, and L. Niu, Functionalized Graphene Oxide Bridging between Enzyme and Au-Sputtered Screen-Printed Interface for Glucose Detection, ACS Applied Nano Materials, 2 (3) (2019) 1589-1596. https://doi.org/10.1021/acsanm.9b00041
[52] I.R. Suhito, K.-M. Koo, and T.-H. Kim, Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells, Biomedicines, 9 (1) (2021) https://doi.org/10.3390/biomedicines9010015
[53] L. Singh, R. Singh, B. Zhang, S. Cheng, B. Kumar Kaushik, and S. Kumar, LSPR based uric acid sensor using graphene oxide and gold nanoparticles functionalized tapered fiber, Optical Fiber Technology, 53 (2019) 102043. https://doi.org/10.1016/j.yofte.2019.102043
[54] G. Zhu, L. Cheng, R. Qi, M. Zhang, J. Zhao, L. Zhu, and M. Dong, A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor, Microchimica Acta, 187 (1) (2019) 72. https://doi.org/10.1007/s00604-019-4026-0
[55] R. Kant and B.D. Gupta. SPR Based Optical Biosensor for Acetylcholine Utilizing Enzyme Entrapped Ta2O5 Nanoflowers Assembly Encapsulated in Chitosan and rGO Matrix. in Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors). 2019. San Jose, California: Optical Society of America. https://doi.org/10.1364/FTS.2019.JTh2A.20
[56] B. Miranda, I. Rea, P. Dardano, L. De Stefano, and C. Forestiere, Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications, Biosensors, 11 (4) (2021) https://doi.org/10.3390/bios11040107
[57] H.B. Yildiz, R. Freeman, R. Gill, and I. Willner, Electrochemical, Photoelectrochemical, and Piezoelectric Analysis of Tyrosinase Activity by Functionalized Nanoparticles, Analytical Chemistry, 80 (8) (2008) 2811-2816. https://doi.org/10.1021/ac702401v
[58] M. Holzinger, A. Le Goff, and S. Cosnier, Synergetic Effects of Combined Nanomaterials for Biosensing Applications, Sensors (Basel, Switzerland), 17 (5) (2017) 1010. https://doi.org/10.3390/s17051010
[59] H. Jia, P. Xu, and X. Li, Integrated Resonant Micro/Nano Gravimetric Sensors for Bio/Chemical Detection in Air and Liquid, Micromachines, 12 (6) (2021) https://doi.org/10.3390/mi12060645
[60] J. Qiu, H. Peng, and R. Liang, Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors, Electrochemistry Communications, 9 (11) (2007) 2734-2738. https://doi.org/10.1016/j.elecom.2007.09.009
[61] M. Eguílaz, R. Villalonga, P. Yáñez-Sedeño, and J.M. Pingarrón, Designing Electrochemical Interfaces with Functionalized Magnetic Nanoparticles and Wrapped Carbon Nanotubes as Platforms for the Construction of High-Performance Bienzyme Biosensors, Analytical Chemistry, 83 (20) (2011) 7807-7814. https://doi.org/10.1021/ac201466m
[62] S. Zhang, D. Wu, H. Li, J. Zhu, W. Hu, M. Lu, and X. Liu, Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS, Food & Function, 8 (9) (2017) 3219-3227. https://doi.org/10.1039/C7FO00928C
[63] R.S.J. Alkasir, M. Ganesana, Y.-H. Won, L. Stanciu, and S. Andreescu, Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol A, Biosensors and Bioelectronics, 26 (1) (2010) 43-49. https://doi.org/10.1016/j.bios.2010.05.001
[64] C.I. Colino, J.M. Lanao, and C. Gutiérrez-Millán, Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections, Materials Science and Engineering: C, (2021) 111843. https://doi.org/10.1016/j.msec.2020.111843
[65] Y. Zhang and S. Tadigadapa, Calorimetric biosensors with integrated microfluidic channels, Biosensors and Bioelectronics, 19 (12) (2004) 1733-1743. https://doi.org/10.1016/j.bios.2004.01.009
[66] P. Bhattarai and S. Hameed, Basics of biosensors and nanobiosensors, Nanobiosensors: From Design to Applications, (2020) 1-22. https://doi.org/10.1002/9783527345137.ch1
[67] T.-F. Tseng, Y.-L. Yang, M.-C. Chuang, S.-L. Lou, M. Galik, G.-U. Flechsig, and J. Wang, Thermally stable improved first-generation glucose biosensors based on Nafion/glucose-oxidase modified heated electrodes, Electrochemistry communications, 11 (9) (2009) 1819-1822. https://doi.org/10.1016/j.elecom.2009.07.030
[68] S.A. Polshettiwar, C.D. Deshmukh, M.S. Wani, A.M. Baheti, E. Bompilwar, S. Choudhari, D. Jambhekar, and A. Tagalpallewar, Recent Trends on Biosensors in Healthcare and Pharmaceuticals: An Overview, International Journal of Pharmaceutical Investigation, 11 (2) (2021) 131-136. https://doi.org/10.5530/ijpi.2021.2.25
[69] Y. Hasebe, T. Akiyama, T. Yagisawa, and S. Uchiyama, Enzyme-less amperometric biosensor for l-ascorbate using poly-l-histidine-copper complex as an alternative biocatalyst, Talanta, 47 (5) (1998) 1139-1147. https://doi.org/10.1016/S0039-9140(98)00193-3
[70] R. Baronas, Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors, Electrochimica Acta, 240 (2017) 399-407. https://doi.org/10.1016/j.electacta.2017.04.075
[71] T. Adhikary, A. Nanda, K. Thangapandi, S. Roy, and S.K. Jana, Trends in Biosensors and Role of Enzymes as Their Sensing Element for Healthcare Applications, in Microbial Fermentation and Enzyme Technology. 2020, CRC Press. p. 147-164. https://doi.org/10.1201/9780429061257-10
[72] R. Antiochia, Developments in biosensors for CoV detection and future trends, Biosensors and Bioelectronics, 173 (2021) 112777. https://doi.org/10.1016/j.bios.2020.112777
[73] L. He, Y. Yang, J. Kim, L. Yao, X. Dong, T. Li, and Y. Piao, Multi-layered enzyme coating on highly conductive magnetic biochar nanoparticles for bisphenol A sensing in water, Chemical Engineering Journal, 384 (2020) 123276. https://doi.org/10.1016/j.cej.2019.123276