Montmorillonite-Starch based Nano-Composites and Applications


Montmorillonite-Starch based Nano-Composites and Applications

Milan K Barman, Nirmala Tamang, Ajaya Bhattarai, Bidyut Saha

Biopolymer nanocomposites are the foremost valuable materials among the existing nanocomposites. Biopolymer nanocomposite compounds are biodegradable, eco-friendly and low in cost. Due to these properties, biopolymer nanocomposites can easily replace petroleum-based nanocomposite in various applications. Compared to pure polymer, clay-polymer nanocomposites exhibit favorable physical, chemical, and mechanical properties since they are dispersed at different sizes and contain improved size dispersion and size distribution. There are several biopolymers on earth, but starch is the most abundant. Moreover, its chemical and physical properties make it an important natural polymer.

Nanocomposite, Clay Materials, Biopolymer, Biodegradable, Cost-Effective, Sustainable Materials

Published online 6/2/2022, 38 pages

Citation: Milan K Barman, Nirmala Tamang, Ajaya Bhattarai, Bidyut Saha, Montmorillonite-Starch based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 172-209, 2022


Part of the book on Advanced Applications of Micro and Nano Clay

[1] V.K. Thakur, M.F. Lin, E.J. Tan, P.S. Lee, Green aqueous modification of fluoropolymers for energy storage applications, J. Mater. Chem. 22 (2012) 5951-5959.
[2] V.K. Thakur, J. Yan, M.F. Lin, C. Zhi, D. Golberg, Y. Bando, R. Sim, P.S. Lee, Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs, Polym. Chem. 3 (2012) 962-969.
[3] V.K. Thakur, E.J. Tan, M.F. Lin, P.S. Lee, Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance, Polym. Chem. 2 (2011) 2000-2009.
[4] M. Avella, J.J. De Vlieger, M.E. Errico, S. Fischer, P. Vacca, M.G. Volpe, Biodegradable starch/clay nanocomposite films for food packaging applications, Food Chem. 93 (2005) 467-474.
[5] L. Avérous, P.J. Halley, Biocomposites based on plasticized starch, Biofuels, Bioprod. Biorefining. 3 (2009) 329-343.
[6] J.A. Mbey, S. Hoppe, F. Thomas, Cassava starch-kaolinite composite film. Effect of clay content and clay modification on film properties, Carbohydr. Polym. 88 (2012) 213-222.
[7] R. Zhao, P. Torley, P.J. Halley, Emerging biodegradable materials: Starch- and protein-based bio-nanocomposites, J. Mater. Sci. 43 (2008) 3058-3071.
[8] F. Zia, K.M. Zia, M. Zuber, S. Kamal, N. Aslam, Starch based polyurethanes: A critical review updating recent literature, Carbohydr. Polym. 134 (2015) 784-798.
[9] L. Yu, K. Dean, L. Li, Polymer blends and composites from renewable resources, Prog. Polym. Sci. 31 (2006) 576-602.
[10] D. Merino, T.J. Gutiérrez, A.Y. Mansilla, C.A. Casalongué, V.A. Alvarez, Critical Evaluation of Starch-Based Antibacterial Nanocomposites as Agricultural Mulch Films: Study on Their Interactions with Water and Light, ACS Sustain. Chem. Eng. 6 (2018) 15662-15672.
[11] Q. Wu, L. Zhang, Structure and properties of casting films blended with starch and waterborne polyurethane, J. Appl. Polym. Sci. 79 (2001) 2006-2013.<2006::AID-APP1009>3.0.CO;2-F
[12] M. Bhattacharya, Stress relaxation of starch/synthetic polymer blends, J. Mater. Sci. 33 (1998) 4131-4139.
[13] D.R. Coffin, M.L. Fishman, P.H. Cooke, Mechanical and microstructural properties of pectin/starch films, J. Appl. Polym. Sci. 57 (1995) 663-670.
[14] Y.X. Xu, K.M. Kim, M.A. Hanna, D. Nag, Chitosan-starch composite film: Preparation and characterization, Ind. Crops Prod. 21 (2005) 185-192.
[15] P. Kampeerapappun, D. Aht-ong, D. Pentrakoon, K. Srikulkit, Preparation of cassava starch/montmorillonite composite film, Carbohydr. Polym. 67 (2007) 155-163.
[16] H.M. Wilhelm, M.R. Sierakowski, G.P. Souza, F. Wypych, Starch films reinforced with mineral clay, Carbohydr. Polym. 52 (2003) 101-110.
[17] I. Šimkovic, J.A. Laszlo, A.R. Thompson, Preparation of a weakly basic ion exchanger by crosslinking starch with epichlorohydrin in the presence of NH4OH1, Carbohydr. Polym. 30 (1996) 25-30.
[18] G.E. Luckachan, C.K.S. Pillai, Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives, J. Polym. Environ. 19 (2011) 637-676 .
[19] J.C. Lin, Investigation of impact behavior of various silica-reinforced polymeric matrix nanocomposites, Compos. Struct. 84 (2008) 125-131.
[20] M.W. Ho, C.K. Lam, K. tak Lau, D.H.L. Ng, D. Hui, Mechanical properties of epoxy-based composites using nanoclays, Compos. Struct. 75 (2006) 415-421.
[21] D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer (Guildf). 49 (2008) 3187-3204.
[22] K. Wilpiszewska, A.K. Antosik, T. Spychaj, Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films, Carbohydr. Polym. 128 (2015) 82-89.
[23] H.M. Park, W.K. Lee, C.Y. Park, W.J. Cho, C.S. Ha, Environmentally friendly polymer hybrids Part I mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites, J. Mater. Sci. 38 (2003) 909-915.
[24] J.K. Pandey, R.P. Singh, Green nanocomposites from renewable resources: Effect of plasticizer on the structure and material properties of clay-filled starch, Starch/Staerke. 57 (2005) 8-15.
[25] K. Bagdi, P. Müller, B. Pukánszky, Thermoplastic starch/layered silicate composites: Structure, interaction, properties, Compos. Interfaces. 13 (2006) 1-17.
[26] F. Chivrac, O. Gueguen, E. Pollet, S. Ahzi, A. Makradi, L. Averous, Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites, Acta Biomater. 4 (2008) 1707-1714.
[27] J. Yang, K. Tang, G. Qin, Y. Chen, L. Peng, X. Wan, H. Xiao, Q. Xia, Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films, Carbohydr. Polym. 166 (2017) 256-263.
[28] Y. Nakamura, S. Miyachi, Effect of temperature on starch degradation in chlorella vulgaris 11h cells, Plant Cell Physiol. 23 (1982) 333-341.
[29] M. Esmaeili, G. Pircheraghi, R. Bagheri, Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol, Polym. Int. 66 (2017) 809-819.
[30] N. Laohakunjit, A. Noomhorm, Effect of plasticizers on mechanical and barrier properties of rice starch film, Starch/Staerke. 56 (2004) 545-551.
[31] X. Ma, J. Yu, The effects of plasticizers containing amide groups on the properties of thermoplastic starch, Starch/Staerke. 56 (2004) 2439-2448.
[32] H. Li, M.A. Huneault, Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends, J. Appl. Polym. Sci. 119 (2011) 2016-2026.
[33] H.D. Özeren, M. Guivier, R.T. Olsson, F. Nilsson, M.S. Hedenqvist, Ranking plasticizers for polymers with atomistic simulations: PVT, mechanical properties, and the role of hydrogen bonding in thermoplastic starch, ACS Appl. Polym. Mater. 2 (2020) 2405-2412.
[34] H. Namazi, A. Dadkhah, Surface modification of starch nanocrystals through ring-opening polymerization of ε-caprolactone and investigation of their microstructures, J. Appl. Polym. Sci. 110 (2008) 281-293.
[35] J. Blazek, E.P. Gilbert, Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review, Carbohydr. Polym. 85 (2011) 1139-1153.
[36] Y.I. Cornejo-ramírez, O. Martínez-cruz, C.L. Del, F.J. Wong-corral, J. Borboa-flores, J. Cinco-moroyoqui, Y. Isbeth, O. Martínez-cruz, C.L. Del, F.J. Wong-corral, J. Borboa-flores, F.J. Cinco-, Y.I. Cornejo-ramírez, O. Martínez-cruz, C.L. Del Toro-sánchez, F.J. Wong-corral, J. Borboa-flores, F.J. Cinco-moroyoqui, D. De Investigación, U. De Sonora, C.P. México, The structural characteristics of starches and their functional properties The structural characteristics of starches and their functional properties, CyTA – J. Food. 00 (2018) 1003-1017.
[37] S.G. You, M.S. Izydorczyk, Molecular characteristics of barley starches with variable amylose content, Carbohydr. Polym. 49 (2002) 33-42.
[38] T. Verwimp, G.E. Vandeputte, K. Marrant, J.A. Delcour, Isolation and characterisation of rye starch, J. Cereal Sci. 39 (2004) 85-90.
[39] F.H.G. Peroni, T.S. Rocha, C.M.L. Franco, Some structural and physicochemical characteristics of tuber and root starches, Food Sci. Technol. Int. 12 (2006) 505-513.
[40] Z. Ao, J. lin Jane, Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley, Carbohydr. Polym. 67 (2007) 46-55.
[41] C.M. Brites, C.A.L. Dos Santos, A.S. Bagulho, M.L. Beirão-Da-Costa, Effect of wheat puroindoline alleles on functional properties of starch, Eur. Food Res. Technol. 226 (2008) 1205-1212
[42] S. Sandeep, N. Singh, N. Isono, T. Noda, Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch, J. Agric. Food Chem. 58 (2010) 1180-1188.
[43] Y.I. Cornejo-Ramírez, F.J. Cinco-Moroyoqui, F. Ramírez-Reyes, E.C. Rosas-Burgos, P.S. Osuna-Amarillas, F.J. Wong-Corral, J. Borboa-Flores, A.G. Cota-Gastélum, Physicochemical characterization of starch from hexaploid triticale (X Triticosecale Wittmack) genotypes, CYTA – J. Food. 13 (2015).
[44] E. Fuentes-Zaragoza, M.J. Riquelme-Navarrete, E. Sánchez-Zapata, J.A. Pérez-Álvarez, Resistant starch as functional ingredient: A review, Food Res. Int. 43 (2010) 931-942.
[45] C. Hernández-Jaimes, L.A. Bello-Pérez, E.J. Vernon-Carter, J. Alvarez-Ramirez, Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis, Carbohydr. Polym. 95 (2013) 207-213.
[46] D. Le Corre, J. Bras, A. Dufresne, Starch nanoparticles: A review, Biomacromolecules. 11 (2010) 1139-1153.
[47] I. Diañez, I. Martínez, P. Partal, Synergistic effect of combined nanoparticles to elaborate exfoliated egg-white protein-based nanobiocomposites, Compos. Part B Eng. 88 (2016) 36-43.
[48] C. Zhou, D. Tong, W. Yu, Smectite nanomaterials: Preparation, properties, and functional applications, in: Nanomater. from Clay Miner. A New Approach to Green Funct. Mater., 2019: pp. 335-364.
[49] C.H. Zhou, J. Keeling, Fundamental and applied research on clay minerals: From climate and environment to nanotechnology, Appl. Clay Sci. 74 (2013) 3-9.
[50] T.T. Zhu, C.H. Zhou, F.B. Kabwe, Q.Q. Wu, C.S. Li, J.R. Zhang, Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites, Appl. Clay Sci. 169 (2019) 48-66.
[51] F. Jia, S. Song, Exfoliation and characterization of layered silicate minerals: A review, Surf. Rev. Lett. 21 (2014) 1-10.
[52] B. Ates, S. Koytepe, S. Balcioglu, A. Ulu, C. Gurses, Biomedical applications of hybrid polymer composite materials, in: Hybrid Polym. Compos. Mater. Appl., 2017: pp. 343-408.
[53] Y. Zare, Recent progress on preparation and properties of nanocomposites from recycled polymers: A review, Waste Manag. 33 (2013) 598-604.
[54] L. Yu, K. Dean, L. Li, Polymer blends and composites from renewable resources, Prog. Polym. Sci. 31 (2006) 576-602.
[55] P.J. Jandas, S. Mohanty, S.K. Nayak, Green Nanocomposites from Renewable Resource-Based Biodegradable Polymers and Environmentally-Friendly Blends, in: Polym. Nanocomposites Based Inorg. Org. Nanomater., 2015: pp. 401-442.
[56] H. Fischer, Polymer nanocomposites: From fundamental research to specific applications, Mater. Sci. Eng. C. 23 (2003) 763-772.
[57] H.T. Liao, C.S. Wu, Synthesis and characterization of polyethylene-octene elastomer/clay/ biodegradable starch nanocomposites, J. Appl. Polym. Sci. 97 (2005) 397-404.
[58] H. Namazi, M. Mosadegh, A. Dadkhah, New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study, Carbohydr. Polym. 75 (2009) 665-669.
[59] G. Madhumitha, J. Fowsiya, S. Mohana Roopan, V.K. Thakur, Recent advances in starch-clay nanocomposites, Int. J. Polym. Anal. Charact. 23 (2018) 331-345.
[60] W. Wang, A. Wang, Recent progress in dispersion of palygorskite crystal bundles for nanocomposites, Appl. Clay Sci. 119 (2016) 18-30.
[61] Q.X. Zhang, Z.Z. Yu, X.L. Xie, K. Naito, Y. Kagawa, preparation and crystalline morphology of biodegradable starch/clay nanocomposites, Polymer 48 (2007) 7193-7200.
[62] M.P. Guarás, V.A. Alvarez, L.N. Ludueña, Biodegradable nanocomposites based on starch/polycaprolactone/compatibilizer ternary blends reinforced with natural and organo-modified montmorillonite, J. Appl. Polym. Sci. 133 (2016) 6-11.
[63] A.S. Giroto, A. De Campos, E.I. Pereira, T.S. Ribeiro, J.M. Marconcini, C. Ribeiro, Photoprotective effect of starch/montmorillonite composites on ultraviolet-induced degradation of herbicides, React. Funct. Polym. 93 (2015) 156-162.
[64] S.L. Bee, M.A.A. Abdullah, S.T. Bee, L.T. Sin, A.R. Rahmat, Polymer nanocomposites based on silylated-montmorillonite: A review, Prog. Polym. Sci. 85 (2018) 57-82.
[65] A. A., F. K., N. K., PVA / Montmorillonite Nanocomposites: Development and Properties, in: Nanocomposites Polym. with Anal. Methods, 2011: pp. 29-50.
[66] J.M. Yeh, K.C. Chang, Polymer/layered silicate nanocomposite anticorrosive coatings, J. Ind. Eng. Chem. 14 (2008) 275-291.
[67] J. Ma, J. Xu, J.H. Ren, Z.Z. Yu, Y.W. Mai, A new approach to polymer/montmorillonite nanocomposites, Polymer (Guildf). 44 (2003) 4619-4624.
[68] M. Panahi-Sarmad, M. Abrisham, M. Noroozi, A. Amirkiai, P. Dehghan, V. Goodarzi, B. Zahiri, Deep focusing on the role of microstructures in shape memory properties of polymer composites: A critical review, Eur. Polym. J. 117 (2019) 280-303.
[69] R. Babu Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, T.O. Varghese, An Overview of Polymer-Clay Nanocomposites, in: Clay-Polymer Nanocomposites, 2017.
[70] F. Gao, Clay/polymer composites: The story, Mater. Today. 7 (2004) 50-55.
[71] J. Fawaz, V. Mittal, Synthesis of Polymer Nanocomposites : nanocomposite method, Synth. Tech. Polym. Nanocomposite. (2015) 1-30.
[72] J.M. Yeh, K.C. Chang, Polymer/layered silicate nanocomposite anticorrosive coatings, J. Ind. Eng. Chem. 14 (2008) 275-291.
[73]Z. Shen, G.P. Simon, Y.B. Cheng, Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites, Polymer. 43 (2002) 4251-4260.
[74] H. Namazi, M. Mosadegh, A. Dadkhah, New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study, Carbohydr. Polym. 75 (2009) 665-669.
[75] B. Chen, J.R.G. Evans, Preferential intercalation in polymer-clay nanocomposites, J. Phys. Chem. B. 108 (2004) 14986-14990.
[76] N.N. Bhiwankar, R.A. Weiss, Melt intercalation/exfoliation of polystyrene-sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers,Polymer. 47 (2006) 6684-6691.
[77] H.A. Stretz, D.R. Paul, R. Li, H. Keskkula, P.E. Cassidy, Intercalation and exfoliation relationships in melt-processed poly(styrene-co-acrylonitrile)/montmorillonite nanocomposites, Polymer. 46 (2005) 2621-2637.
[78] P. Motamedi, R. Bagheri, Investigation of the nanostructure and mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites, Mater. Des. 31 (2010) 1776-1784.
[79] R.A. Vaia, K.D. Jandt, E.J. Kramer, E.P. Giannelis, Microstructural Evolution of Melt Intercalated Polymer-Organically Modified Layered Silicates Nanocomposites, Chem. Mater. 8 (1996) 2628-2635.
[80]S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641.
[81] J.M. Yeh, K.C. Chang, Polymer/layered silicate nanocomposite anticorrosive coatings, J. Ind. Eng. Chem. 14 (2008) 275-291.
[82] M.H. Kim, O.O. Park, Fabrication of syndiotactic polystyrene nanocomposites with exfoliated clay and their properties, J. Appl. Polym. Sci. 125 (2012) 630-637.
[83] B. Yalcin, M. Cakmak, The role of plasticizer on the exfoliation and dispersion and fracture behavior of clay particles in PVC matrix: A comprehensive morphological study, Polymer. 45 (2004) 6623-6638.
[84]A.B. Morgan, J.W. Gilman, Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study, J. Appl. Polym. Sci. 87 (2002) 1329-1338.
[85]J.M. Mata-Padilla, C.A. Ávila-Orta, F.J. Medellín-Rodríguez, J.A. Valdéz-Garza, A. Torres-Martínez, Study of fracture behavior of polypropylene/MWCNT and polypropylene/m-MMT nanocomposites by small angle X-ray scattering (SAXS), in: Mater. Res. Soc. Symp. Proc., (2012): pp. 75-80.
[86] M.F. Huang, J.G. Yu, X.F. Ma, P. Jin, High performance biodegradable thermoplastic starch – EMMT nanoplastics, Polymer 46 (2005) 3157-3162.
[87] K.M. Dean, M.D. Do, E. Petinakis, L. Yu, Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites, Compos. Sci. Technol. 68 (2008) 1453-1462.
[88]Y.L. Chung, S. Ansari, L. Estevez, S. Hayrapetyan, E.P. Giannelis, H.M. Lai, Preparation and properties of biodegradable starch-clay nanocomposites, Carbohydr. Polym. 79 (2010) 391396.
[89] W. Wang, P. Song, R. Wang, R. Zhang, Q. Guo, H. Hou, H. Dong, Effects of cationization of high amylose maize starch on the performance of starch/montmorillonite nano-biocomposites, Ind. Crops Prod. 117 (2018) 333-339.
[90] A. Gürses, Introduction to polymer-clay nanocomposites, 2016.
[91] S. Gul, A. Kausar, B. Muhammad, S. Jabeen, Research progress on properties and applications of polymer/clay nanocomposite, Polym. – Plast. Technol. Eng. 55 (2016) 684-703.
[92] A.Y. Malkin, A. Isayev, Rheology. Concepts, Methods, and Applications: Concepts, Methods, and Applications: 3rd Edition, 2017
[93] K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema, I. Inuwa, Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites, Mater. Des. 46 (2013) 391-410.
[94] J. Yang, S. Tighe, A Review of Advances of Nanotechnology in Asphalt Mixtures, Procedia – Soc. Behav. Sci. 96 (2013) 1269-1276.
[95] C.A. Romero-Bastida, M. Chávez Gutiérrez, L.A. Bello-Pérez, E. Abarca-Ramírez, G. Velazquez, G. Mendez-Montealvo, Rheological properties of nanocomposite-forming solutions and film based on montmorillonite and corn starch with different amylose content, Carbohydr. Polym. 188 (2018) 121-127.
[96] F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu, L. Chen, Rheological properties of starches with different amylose/amylopectin ratios, J. Cereal Sci. 49 (2009) 371-377.
[97] M.F.C. Jorge, C.H. Caicedo Flaker, S.F. Nassar, I.C.F. Moraes, A.M.Q.B. Bittante, P.J. Do Amaral Sobral, Viscoelastic and rheological properties of nanocomposite-forming solutions based on gelatin and montmorillonite, J. Food Eng. 120 (2014) 81-87.
[98] J.W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38 (2013) 1629-1652.
[99] A. Arora, G.W. Padua, Review: Nanocomposites in food packaging, J. Food Sci. 75 (2010) 43-49.
[100] S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci. 1 (2019) 2-30.
[101] K.K. Kuorwel, M.J. Cran, J.D. Orbell, S. Buddhadasa, S.W. Bigger, Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver, Compr. Rev. Food Sci. Food Saf. 14 (2015) 411-430.
[102] S. Thakur, R. V. Saini, P. Singh, P. Raizada, V.K. Thakur, A.K. Saini, Nanoparticles as an emerging tool to alter the gene expression: Preparation and conjugation methods, Mater. Today Chem. 17 (2020).
[103] M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, Biomedical applications of cationic clay minerals, RSC Adv. 5 (2015) 29467-29481.
[104] C.J. Ward, M. DeWitt, E.W. Davis, Halloysite nanoclay for controlled release applications, in: ACS Symp. Ser., 2012: pp. 209-238.
[105] S.A. Gârea, A.I. Mihai, A. Ghebaur, C. Nistor, A. Sârbu, Porous clay heterostructures: A new inorganic host for 5-fluorouracil encapsulation, Int. J. Pharm. 491 (2015) 299-309.
[106]F. Bazmi Zeynabad, R. Salehi, E. Alizadeh, H.S. Kafil, A.M. Hassanzadeh, M. Mahkam, PH-Controlled multiple-drug delivery by a novel antibacterial nanocomposite for combination therapy, RSC Adv. 5 (2015) 105678-105691.
[107] G. V. Joshi, H.A. Patel, B.D. Kevadiya, H.C. Bajaj, Montmorillonite intercalated with vitamin B1 as drug carrier, Appl. Clay Sci. 45 (2009) 248-253.
[108] J.H. Park, H.J. Shin, M.H. Kim, J.S. Kim, N. Kang, J.Y. Lee, K.T. Kim, J.I. Lee, D.D. Kim, Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems, J. Pharm. Investig. 46 (2016) 363-375.
[109] M.L. Chan, K.T. Lau, T.T. Wong, M.P. Ho, D. Hui, Mechanism of reinforcement in a nanoclay/polymer composite, Compos. Part B Eng. 42 (2011) 1708-1712.
[110] W.F. Lee, Y.C. Chen, Effect of bentonite on the physical properties and drug-release behavior of poly(AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive, J. Appl. Polym. Sci. 91 (2004) 2934-2941.
[111] C.R.N. Jesus, E.F. Molina, S.H. Pulcinelli, C. V. Santilli, Highly Controlled Diffusion Drug Release from Ureasil-Poly(ethylene oxide)-Na+-Montmorillonite Hybrid Hydrogel Nanocomposites, ACS Appl. Mater. Interfaces. 10 (2018) 19059-19068.
[112] M.S. San Román, M.J. Holgado, B. Salinas, V. Rives, Drug release from layered double hydroxides and from their polylactic acid (PLA) nanocomposites, Appl. Clay Sci. 71 (2013) 1-7.
[113] E. Valarezo, L. Tammaro, S. González, O. Malagón, V. Vittoria, Fabrication and sustained release properties of poly(ε-caprolactone) electrospun fibers loaded with layered double hydroxide nanoparticles intercalated with amoxicillin, Appl. Clay Sci. 72 (2013) 104-109.
[114] M. Del Arco, A. Fernández, C. Martín, V. Rives, Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit® S 100 covering, J. Solid State Chem. 183 (2010) 3002-3009.
[115] L.N.M. Ribeiro, A.C.S. Alcântara, M. Darder, P. Aranda, P.S.P. Herrmann, F.M. Araújo-Moreira, M. García-Hernández, E. Ruiz-Hitzky, Bionanocomposites containing magnetic graphite as potential systems for drug delivery, Int. J. Pharm. 477 (2014) 553-563.
[116] Y.E. Miao, H. Zhu, D. Chen, R. Wang, W.W. Tjiu, T. Liu, Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems, Mater. Chem. Phys. 134 (2012) 623-630.
[117] F. Cao, Y. Wang, Q. Ping, Z. Liao, Zn-Al-NO3-layered double hydroxides with intercalated diclofenac for ocular delivery, Int. J. Pharm. 404 (2011) 250-256.
[118] R. Rojas, M.C. Palena, A.F. Jimenez-Kairuz, R.H. Manzo, C.E. Giacomelli, Modeling drug release from a layered double hydroxide-ibuprofen complex, Appl. Clay Sci. 62-63 (2012) 15-20.
[119] S. Rajkumar, B.D. Kevadiya, H.C. Bajaj, Montmorillonite/Poly (L-Lactide) microcomposite spheres as reservoirs of antidepressant drugs and their controlled release property, Asian J. Pharm. Sci. 10 (2015) 452-558.
[120] S.A. Gârea, A.I. Voicu, H. Iovu, Clay-Polymer Nanocomposites for Controlled Drug Release, in: Clay-Polymer Nanocomposites, 2017.
[121] A. Verma, S. Thakur, G. Mamba, Prateek, R.K. Gupta, P. Thakur, V.K. Thakur, Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye, Int. J. Biol. Macromol. 148 (2020) 1130-1139.
[122] V. Bahadur, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water : A review, J. Environ. Manage. 232 (2019) 803-817.
[123]E.I. Unuabonah, A. Taubert, Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment, Appl. Clay Sci. 99 (2014) 83-92.
[124]K.A.H. Hernández, Polymer-Clay Nanocomposites and Composites: Structures, Characteristics, and their Applications in the Removal of Organic Compounds of Environmental Interest, Med. Chem. (Los. Angeles). 6 (2016) 201-210.
[125]A.M. Atta, H.A. Al-Lohedan, A.O. Ezzat, Z.A. Issa, A.B. Oumi, Synthesis and application of magnetite polyacrylamide amino-amidoxime nano-composites as adsorbents for water pollutants, J. Polym. Res. 23 (2016).
[126]A. Olad, M. Bastanian, H. Bakht Khosh Hagh, Thermodynamic and Kinetic Studies of Removal Process of Hexavalent Chromium Ions from Water by Using Bio-conducting Starch-Montmorillonite/Polyaniline Nanocomposite, J. Inorg. Organomet. Polym. Mater. 29 (2019) 1916-1926.
[127]] E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: A review, Environ. Int. 30 (2004) 953−971.
[128] S. Lawchoochaisakul, P. Monvisade, P. Siriphannon, Cationic starch intercalated montmorillonite nanocomposites as natural based adsorbent for dye removal, Carbohydr. Polym. 253 (2021) 117230.
[129]A. Olad, F.F. Azhar, Eco-friendly biopolymer/clay/conducting polymer nanocomposite: Characterization and its application in reactive dye removal, Fibers Polym. 15 (2014) 1321-1329.
[130] A. Olad, F.F. Azhar, M. Shargh, S. Jharfi, Application of response surface methodology for modeling of reactive dye removal from solution using starch-montmorillonite/polyaniline nanocomposite, Polym. Eng. Sci. 54 (2014) 1595-1607.