Vermiculite Starch-based Nanocomposites and Applications


Vermiculite Starch-based Nanocomposites and Applications

Nadia Akram, Khawaja Taimoor Rashid, Tanzeel Munawar, Muhammad Usman, Muhammad Saeed

Nowadays, the demand of biodegradable as well as biocompatible nanocomposites-based products is growing all over the world. In this perspective, a little effort is done in terms of exploring the effectiveness of environment friendly vermiculite starch-based nanocomposites. Both the constituents are naturally occurring so they are considered as low-cost materials. Different methods such as solution casting, melt solution blending as well as in-situ polymerization approaches are used for the fabrication of vermiculite starch-based nanocomposites. Functional characterization of nanocomposites can be investigated in terms of XRD, SEM, FTIR, TGA, DSC as well as by some mechanical testing methods. The resultant nanocomposites give attractive solutions in the subject of wastewater treatment and food packaging additionally may also exhibits improved fire properties that are resistive.

Starch, Expanded Vermiculite, Silicates Sheets, Nanofillers, Biodegradable

Published online 6/2/2022, 28 pages

Citation: Nadia Akram, Khawaja Taimoor Rashid, Tanzeel Munawar, Muhammad Usman, Muhammad Saeed, Vermiculite Starch-based Nanocomposites and Applications, Materials Research Foundations, Vol. 125, pp 124-151, 2022


Part of the book on Advanced Applications of Micro and Nano Clay

[1] F. Chivrac, E. Pollet, L. Averous, Progress in nano-biocomposites based on polysaccharides and nanoclays, Mater. Sci. Eng. 67 (2009) 1-17.
[2] F. Chivrac, E. Pollet, M. Schmutz, L. Avérous, New approach to elaborate exfoliated starch-based nanobiocomposites, Int. J. Biol. Macromol. 9 (2008) 896-900.
[3] Y.L. Chung, S. Ansari, L. Estevez, S. Hayrapetyan, E.P. Giannelis, H.M. Lai, Preparation and properties of biodegradable starch-clay nanocomposites, Carbohydr. Polym. 79 (2010) 391-396.
[4] M. Huang, J. Yu, Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites, J. Appl. Polym. Sci. 99 (2006) 170-176.
[5] Y.L. Chung, H.M. Lai, Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites, Carbohydr. Polym. 80 (2010) 525-532.
[6] M.F. Huang, J.G. Yu, X.F. Ma, P. Jin, High performance biodegradable thermoplastic starch-EMMT nanoplastics, Polym. J. 46 (2005) 3157-3162.
[7] H.M. Park, W.K. Lee, C.Y. Park, W.J. Cho, C.S. Ha, Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites, J. Mater. Sci. 38 (2003) 909-915.
[8] C. Zeppa, F. Gouanvé, E. Espuche, Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: Thermal, water‐sorption, and oxygen‐barrier properties, J. Appl. Polym. Sci. 112 (2009) 2044-2056.
[9] K. Zhang, J. Xu, K. Wang, L. Cheng, J. Wang, B. Liu, Preparation and characterization of chitosan nanocomposites with vermiculite of different modification, Polym. Degrad. Stab. 94 (2009) 2121-2127.
[10] F. Zia, K.M. Zia, M. Zuber, S. Kamal, N. Aslam, Starch based polyurethanes: A critical review updating recent literature, Carbohydr. Polym. 134 (2015) 784-798.
[11] N.J. Vickers, Animal communication: when i’m calling you, will you answer too?, Curr. Biol. 27 (2017) 713-715.
[12] Y. Lu, L. Weng, X. Cao, Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites, Carbohydr. Polym. 63 (2006) 198-204.
[13] M.N. Anges, A. Dufresne, Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis, Int. J. Biol. Macromol. 33 (2000) 8344-8353.
[14] N.M. Hansen, D. Plackett, Sustainable films and coatings from hemicelluloses: a review, Int. J. Biol. Macromol. 9 (2008) 1493-1505.
[15] T. Galicia‐García, F. Martínez‐Bustos, O. Jiménez‐Arévalo, D. Arencón, J. Gámez‐Pérez, A.B. Martínez, Films of native and modified starch reinforced with fiber: Influence of some extrusion variables using response surface methodology, J. Appl. Polym. Sci. 126 (2012) 327-336.
[16] A.P. Mathew, A. Dufresne, Plasticized waxy maize starch: effect of polyols and relative humidity on material properties, Int. J. Biol. Macromol. 3 (2002) 1101-1108.
[17] H.M. Park, X. Li, C.Z. Jin, C.Y. Park, W.J. Cho, C.S. Ha, Preparation and properties of biodegradable thermoplastic starch/clay hybrids, Macromol. Mater. Eng. 287 (2002) 553-558.<553::AID-MAME553>3.0.CO;2-3
[18] J.K. Pandey, R.P. Singh, Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay‐filled starch, Starke. 57 (2005) 8-15.
[19] B. Chen, J.R. Evans, Thermoplastic starch-clay nanocomposites and their characteristics, Carbohydr. Polym. 61 (2005) 455-463.
[20] S. Guggenheim, J.M. Adams, D.C. Bain, F. Bergaya, M.F. Brigatti, V.A. Drits, M.L. Formoso, E. Galán, T. Kogure, H. Stanjek, Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006, Clays Clay Miner. 54 (2006) 761-772.
[21] A.F. Lopez, M.V. Martinez, T. Arbeloa, A.I. Lopez, Crystal Structures of Clay Minerals and their X-ray Identification, J. Photochem. Photobiol. 8 (2007) 85-108.
[22] A.M. Mathieson, G.F. Walker, Crystal structure of magnesium-vermiculite, Am. Mineral. 39 (1954) 231-255.
[23] M.J. Fernández, M.D. Fernández, I.J. Aranburu, Effect of clay surface modification and organoclay purity on microstructure and thermal properties of poly (l-lactic acid)/vermiculite nanocomposites, Appl. Clay Sci. 80 (2013) 372-381.
[24] P. Lu, M. Zhang, Y. Liu, J. Li, M. Xin, Characteristics of vermiculite‐reinforced thermoplastic starch composite films, J. Appl. Polym. Sci. 126 (2012) 116-122.
[25] H.H Murray, Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays, Elsevier, Netherlands, 2006, pp.101-105.
[26] I. Ahmad, F. Ali, F. Rahim, Clay Based Nanocomposites and Their Environmental Applications, Nanomaterials for Environmental Applications their Fascinating Attributes, Bentham Science Publishers, Sharjah U.A.E., 2018, pp. 166.
[27] P.J.P. de Mesquita, R.D.J. Araujo, L.H. de Carvalho, T.S. Alves, R. Barbosa, Thermal evaluation of PHB/PP‐g‐MA blends and PHB/PP‐g‐MA/vermiculite bionanocomposites after biodegradation test, Polym. Eng. Sci. 56 (2016) 555-560.
[28] Y. Guo, M. Chen, J. Li, G. Gao, Effect of vermiculite dispersion in poly (lactic acid) preparation and its biodegradability, Polym. Sci. Ser. B. 58 (2016) 47-53.
[29] D.C. da Costa Reis, T.A. de Oliveira, L.H. de Carvalho, T. Soares Alves, R. Barbosa, Biodegradability of and interaction in the packaging of poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)-vermiculite bionanocomposites, J. Appl. Polym. Sci. 134 (2017).
[30] D.C.D.C. Reis, T.A.D. Oliveira, L.H.D. Carvalho, T.S. Alves, R. Barbosa, The influence of natural clay and organoclay vermiculite on the formation process of bionanocomposites with poly (3-hydroxybutyrate-co-3-hydroxyvalerate), Mater. Jpn. 22 (2017).
[31] M.F. Oliveira, A.L. China, M.G. Oliveira, M.C. Leite, Biocomposites based on Ecobras matrix and vermiculite, Mater. Lett. 158 (2015) 25-28.
[32] M.F. Oliveira, F.C. Braga, M.C. Leite, M.G. Oliveira, Evaluation of thermal properties of nanocomposites based on ecobras matrix and vermiculite modified with alkylphosphonium salt, Macromol. Symp. 367 (2016) 42-48.
[33] M.D. Fernández, M.J. Fernández, Vermiculite/poly (lactic acid) composites: Effect of nature of vermiculite on hydrolytic degradation in alkaline medium, Appl. Clay Sci. 143 (2017) 29-38.
[34] M. Valaskova, G.S. Martynkova, Clay minerals in nature: their characterization, modification and application, BoD-Books on Demand Publisher, 2012, pp. 209-238.
[35] S. Malamis, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms, J. Hazard. Mater. 252 (2013) 428-461.
[36] M. Valášková, J. Tokarský, M. Hundáková, J. Zdrálková, B. Smetana, Role of vermiculite and zirconium-vermiculite on the formation of zircon-cordierite nanocomposites, Appl. Clay Sci. 75 (2013) 100-108.
[37] M. Sutcu, Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks, Ceram. Int. 41 (2015) 2819-2827.
[38] A.M. Rashad, Vermiculite as a construction material-A short guide for Civil Engineer, Constr. Build. Mater. 125 (2016) 53-62.
[39] N. Xie, J. Luo, Z. Li, Z. Huang, X. Gao, Y. Fang, Z.J.S.E.M. Zhang, S. Cells, Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage, Sol. Energy Mater Sol. Cells. 189 (2019) 33-42.
[40] L. Chmielarz, P. Kuśtrowski, Z. Piwowarska, B. Dudek, B. Gil, M. Michalik, Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process, Appl. Catal. B. 88 (2009) 331-340.
[41] S.Y. Lee, H. Chen, M. Hanna, Preparation and characterization of tapioca starch-poly (lactic acid) nanocomposite foams by melt intercalation based on clay type, Ind. Crops. Prod. 28 (2008) 95-106.
[42] K.M. Dean, M.D. Do, E. Petinakis, L. Yu, Key interactions in biodegradable thermoplastic starch/poly (vinyl alcohol)/montmorillonite micro-and nanocomposites, Compos. Sci. Technol. 68 (2008) 1453-1462.
[43] S.A. McGlashan, P.J. Halley, Preparation and characterisation of biodegradable starch‐based nanocomposite materials, Polym. Int. 52 (2003) 1767-1773.
[44] J.W. Rhim, S.I. Hong, C.S. Ha, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT – Food Sci. Technol. 42 (2009) 612-617.
[45] M. Jamshidian, E.A. Tehrany, M. Imran, M.J. Akhtar, F. Cleymand, S.J. Desobry, Structural, mechanical and barrier properties of active PLA-antioxidant films, J. Food Eng. 110 (2012) 380-389.
[46] X. Gong, L. Pan, C.Y. Tang, L. Chen, Z. Hao, W.C. Law, X. Wang, C.P. Tsui, C. Wu, Preparation, optical and thermal properties of CdSe-ZnS/poly (lactic acid)(PLA) nanocomposites, Compos. B. Eng. 66 (2014) 494-499.
[47] N. Najafi, M. Heuzey, P.J. Carreau, Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender, Compos. Sci. Technol. 72 (2012) 608-615.
[48] I.S. Tawakkal, M.J. Cran, S.W. Bigger, Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites, Ind. Crops. Prod. 61 (2014) 74-83.
[49] W. Song, Z. Zheng, W. Tang, X. Wang, A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer, Polym. J. 48 (2007) 3658-3663.
[50] H.M. Ye, K. Hou, Q. Zhou, Improve the thermal and mechanical properties of poly (L-lactide) by forming nanocomposites with pristine vermiculite, Chin. J. Polym. Sci. 34 (2016) 1-12.
[51] H. Liao, D. Ma, Z. Jiao, Y. Xie, S. Tan, X. Cai, L. Huang, Fabrication of quaternary phosphonium-intercalated vermiculite for reinforcing UV-curable epoxy acrylate coatings, J. Adhes. Sci. Technol. 29 (2015) 171-184.
[52] T. Zhang, F. Zhang, S. Dai, Z. Li, B. Wang, H. Quan, Z. Huang, Polyurethane/organic vermiculite composites with enhanced mechanical properties, J. Appl. Polym. Sci. 133 (2016).
[53] Y. Wan, Y. Fan, J. Dan, C. Hong, S. Yang, F. Yu, A review of recent advances in two-dimensional natural clay vermiculite-based nanomaterials, Mater. Res. Express. 6 (2019).
[54] J. Zhang, H. Liu, Z. Wu, W. Xiang, S. Wen, X. Cai, S. Tan, T. Wu, Rubber, Composites, Preparation of organic vermiculite/polymethylmethacrylate nanocomposite featuring excellent mechanical and thermal properties via ultrasonic in situ polymerisation, Plastics, Plast. Rubber Compos. 46 (2017) 333-340.
[55] J. Wang, F. Wang, Z. Gao, M. Zheng, J. Sun, Flame retardant medium-density fiberboard with expanded vermiculite, BioResources 11 (2016) 6940-6947.
[56] H.M. Ye, K. Hou, Q. Zhou, Improve the thermal and mechanical properties of poly (L-lactide) by forming nanocomposites with pristine vermiculite, Chin. J. Polym. Sci. 34 (2016) 1-12.
[57] S. İşçi, Y. İşçi, Characterization and comparison of thermal & mechanical properties of vermiculite polyvinylbutyral nanocomposites synthesized by solution casting method, Appl. Clay Sci. 151 (2018) 189-193.
[58] A.D. Chandio, I.A. Channa, M. Rizwan, S. Akram, M.S. Javed, S.H. Siyal, M. Saleem, M.A. Makhdoom, T. Ashfaq, S. Khan, S. Hussain, Polyvinyl Alcohol and Nano-Clay Based Solution Processed Packaging Coatings, Coatings. 11 (2021) 942.
[59] T. Russo, P. Fucile, R. Giacometti, F. Sannino, Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives, Process. 9 (2021) 719.
[60] M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review, Carbohydr. Polym. 251 (2021) 116986.
[61] L. Guo, G. Li, J. Liu, Y. Meng, Y. Tang, Adsorptive decolorization of methylene blue by crosslinked porous starch, Carbohydr. Polym. 93 (2013) 374-379.
[62] S. Ahmad, B.A. Palvasha, B.B.K. Abbasi, M.S. Nazir, M.N. Akhtar, Z. Tahir, M.A. Abdullah, Preparation and Applications of Polysaccharide‐Based Composites, Polysaccharides: Properties and Applications, Scrivener publishing, John Wiley & Sons, New York, 2021.
[63] A. Pourjavadi, A. Abedin-Moghanaki, A. Tavakoli, Efficient removal of cationic dyes using a new magnetic nanocomposite based on starch-g-poly (vinylalcohol) and functionalized with sulfate groups, RSC. Adv. 6 (2016) 38042-38051.
[64] J. Guo, J. Wang, G. Zheng, X. Jiang, P. Research, A TiO 2/crosslinked carboxymethyl starch composite for high-efficiency adsorption and photodegradation of cationic golden yellow X-GL dye, Environ. Sci. Pollut. Res. 26 (2019) 24395-24406.
[65] G. Gong, F. Zhang, Z. Cheng, L. Zhou, Facile fabrication of magnetic carboxymethyl starch/poly (vinyl alcohol) composite gel for methylene blue removal, Int. J. Biol. Macromol. 81 (2015) 205-211.
[66] F. Delval, G. Crini, N. Morin, J. Vebrel, S. Bertini, G. Torri, The sorption of several types of dye on crosslinked polysaccharides derivatives, Dyes Pigm. 53 (2002) 79-92.
[67] L.M. Zhang, D.Q. Chen, An investigation of adsorption of lead (II) and copper (II) ions by water-insoluble starch graft copolymers, Colloids Surf. A. Physicochem. Eng. Asp. 205 (2002) 231-236.
[68] B. Kim, S.T. Lim, Removal of heavy metal ions from water by cross-linked carboxymethyl corn starch, Carbohydr. Polym. 39 (1999) 217-223.
[69] N.D. Suzaimi, P.S. Goh, N.A. Nizam Nik Malek, B.C. Ng, A.F. Ismail, Nano-Adsorbents in Wastewater Treatment for Phosphate and Nitrate Removal, J. Environ. Nanotechnol. 5 (2021) 339-370.
[70] A. Malathi, A.J. Singh, Antimicrobial activity of rice starch based film reinforced with titanium dioxide (TiO2) nanoparticles, Agric. Res. 56 (2019) 111.
[71] Z. Hejri, A.A. Seifkordi, A. Ahmadpour, S.M. Zebarjad, A. Maskooki, Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles, Int. J. Miner. Metall. Mater. 20 (2013) 1001-1011.
[72] D.K. Ban, S.K. Pratihar, S.J. Paul, An investigation of optical properties of zinc oxide nanoparticle synthesized by starch mediated assembly and its application in photocatalytic bleaching of methyl green and rhodamine-B, Mater. Sci. Semicond. Process. 39 (2015) 691-701.
[73] K. Vidhya, M. Saravanan, G. Bhoopathi, V. Devarajan, S. Subanya, Structural and optical characterization of pure and starch-capped ZnO quantum dots and their photocatalytic activity, Appl. Nanosci. 5 (2015) 235-243.
[74] J. Ma, W. Zhu, Y. Tian, Z. Wang, Preparation of zinc oxide-starch nanocomposite and its application on coating, Nanoscale Res. Lett. 11 (2016) 1-9.
[75] S.T. Lin, M. Thirumavalavan, T.Y. Jiang, J.F. Lee, Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes, Carbohydr. Polym. 105 (2014) 1-9.
[76] J.H. Lee, H.S. Kim, E.T. Yun, S.Y. Ham, J.H. Park, C.H. Ahn, S.H. Lee, H.D. Park, Vertically Aligned Carbon Nanotube Membranes: Water Purification and Beyond, J. Membr. Sci. 10 (2020) 273.
[77] H. Sharma, M. Bhardwaj, M. Kour, S. Paul, Highly efficient magnetic Pd (0) nanoparticles stabilized by amine functionalized starch for organic transformations under mild conditions, Mol. Catal. 435 (2017) 58-68.
[78] F. Delval, G. Crini, J. Vebrel, M. Knorr, G. Sauvin, E. Conte, Starch‐modified filters used for the removal of dyes from waste water, Macromol. Symp. 203 (2003) 165-172.
[79] G. Crini, Studies on adsorption of dyes on beta-cyclodextrin polymer, Bioresour. Technol. 90 (2003) 193-198.
[80] G. Crini, N. Morin, J.C. Rouland, L. Janus, M. Morcellet, S. Bertini, Adsorption de béta-naphtol sur des gels de cyclodextrine-carboxyméthylcellulose réticulés, Eur. Polym. J. 38 (2002) 1095-1103.
[81] G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci. 30 (2005) 38-70.
[82] L. Janus, B. Carbonnier, A. Deratani, M. Bacquet, G. Crini, J. Laureyns, M. Morcellet, New HPLC stationary phases based on (methacryloyloxypropyl-β-cyclodextrin-co-N-vinylpyrrolidone) copolymers coated on silica. Preparation and characterisation, New J. Chem. 27 (2003) 307-312.
[83] C.Y. Jimmy, Z.T. Jiang, H.Y. Liu, J. Yu, L. Zhang, β-Cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples, Anal. Chim. Acta .477 (2003) 93-101.
[84] M. Kitaoka, K. Hayashi, Adsorption of bisphenol A by cross-linked β-cyclodextrin polymer, J. Incl. Phenom. Macrocycl. Chem. 44 (2002) 429-431.
[85] A. Mohseni, L. Fan, F. Roddick, H. Li, Y. Gao, Z. Liu, Cationic starch: an effective flocculant for separating algal biomass from wastewater RO concentrate treated by microalgae, J. Appl. Soc. Psychol. 33 (2021) 917-928.
[86] J.P. Wang, S.J. Yuan, Y. Wang, H. Yu, Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties, Water Res. 47 (2013) 2643-2648.
[87] M. Mohd Amin, S. Heijman, L. Rietveld, Clay-starch combination for micropollutants removal from wastewater treatment plant effluent, Water Sci. Technol. 73 (2016) 1719-1727.
[88] H. Cheng, L. Chen, D.J. McClements, T. Yang, Z. Zhang, F. Ren, M. Miao, Y. Tian, Z. Jin, Technology, Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry, Trends Food Sci. Technol. (2021).
[89] M. Aghazadeh, R. Karim, R.A. Rahman, M.T. Sultan, M. Paykary, S. Johnson, Effect of glycerol on the physicochemical properties of cereal starch films, Czech J. Food Sci. 36 (2018) 403-409.
[90] F. Wang, Z. Gao, M. Zheng, J. Sun, Thermal degradation and fire performance of plywood treated with expanded vermiculite, Fire Mater. 40 (2016) 427-433.
[91] J.Y. Cheong, J. Ahn, M. Seo, Y.S. Nam, Flame-retardant, flexible vermiculite-polymer hybrid film, RSC Adv. 5 (2015) 61768-61774.