Montmorillonite-Chitosan based Nano-Composites and Applications


Montmorillonite-Chitosan based Nano-Composites and Applications

Rabinarayan Parhi, Goutam Kumar Jena

Chitosan is a biopolymer gaining widespread attention due to its astounding physicochemical characteristics and properties, including biocompatibility, mucoadhesive, biodegradability, low toxicity, and polycationic nature. Furthermore, chitosan can be processed to obtain different nanostructures such as nanoparticles, nano-vehicles, nanocapsules, scaffolds, etc. Montmorillonite (MMT) is a major constituent of bentonite clay, which has the ability to ameliorate the mechanical strength of polymers including chitosan when combined with it due to its layered structure. Bionanocomposite is a term used to describe composite materials which encompass component(s) with natural inception and the obtained particles with at the minimum one size ranging from 1 nm to 100 nm. Chitosan-based nanocomposite with MMT showed a proven record of wide applications in drug delivery, medical, biomedical, and pharmaceutical fields. This chapter provides an insight into the various characteristics and properties of chitosan and MMT, different methods to develop their composite, and various forms of the resulted composite along a thorough description of applications.

Chitosan, Montmorillonite, Bionanocomposite, Biodegradable, Biocompatible, Scaffold

Published online 6/2/2022, 38 pages

Citation: Rabinarayan Parhi, Goutam Kumar Jena, Montmorillonite-Chitosan based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 49-86, 2022


Part of the book on Advanced Applications of Micro and Nano Clay

[1] Y. Shchipunov, Bionanocomposites: Green sustainable materials for the near future, Pure Appl. Chem. 84 (2012) 2579-2607.
[2] R. Parhi, Fabrication and characterization of PVA-based green materials, in: S. Ahmed (Ed.), Advanced Green Materials, Woodhead Publishing, Duxford, United Kingdom, 2021, pp. 133-168.
[3] V. Sencadas, D.M. Correia, C. Ribeiro, S. Moreira, G. Botelho, J.G. Ribelles, S. Lanceros-Méndez, Physical-chemical properties of cross-linked chitosan electrospun fiber mats, Polym. Test. 31 (2012) 1062-1069.
[4] C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Prog. Polym. Sci. 34 (2009) 641-678.
[5] P. Monvisade, P. Siriphannon, Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption, Appl. Clay. Sci. 42 (2009) 427-431.
[6] R. Parhi, Drug delivery applications of chitin and chitosan: a review, Env. Chem. Let. 18 (2020) 577-594.
[7] Z. Gu, H. Xie, C. Huang, L. Li, X. Yu, Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing, Int. J. Biol. Macromol. 58 (2013) 121-126.
[8] S. Pradhan, A.K. Brooks, V.K. Yadavalli, Nature-derived materials for the fabrication of functional biodevices, Mater. Today Bio. 7 (2020) 100065.
[9] C. Rodrigues, J.M. Muneron de Mello, F. Dalcanton, D.L.P. Macuvele, N. Padoin, M.A. Fiori, C. Soares, H.G. Riella, Mechanical, Thermal and Antimicrobial Properties of Chitosan Based Nanocomposite with Potential Applications for Food Packaging, J. Polym. Env. 28 (2020) 1216-1236.
[10] C. Aguzzi, P. Cerezo, C. Viseras, C. Caramella, Use of clays as drug delivery systems: Possibilities and limitations, Appl. Clay Sci. 36 (2007) 22-36.
[11] S. Jayrajsinh, G. Shankar, Y.K. Agrawal, L. Bakre, Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review, J. Drug Deliv. Sci. Technol. 39 (2017) 200-209.
[12] A.M. Youssefa, Samah. M. El-Sayed, Bionanocomposites materials for food packaging applications: Concepts and future outlook, Carbohydr. Polym. 193 (2018) 19-27.
[13] E. Günister, D. Pestreli, C.H. Ünlü, O. Atici, N. Güngör, Synthesis and characterization of chitosanMMT biocomposite systems, Carbohydr. Polym. 67 (2007) 358-365.
[14] K. Kudumula, Scope of polymer nano-composite in bio-medical applications, J. Mechanic. Civil Eng. 13 (2016) 18-21.
[15] H.M.C. De Azeredo, Nanocomposites for food packaging applications, Food Res. Int. 42 (2009) 1240-1253.
[16] J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38 (2013) 1629-1652.
[17] X. Liu, Q. Hu, Z. Fang, X. Zhang, B. Zhang, Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal, Langmuir 25 (2008) 3-8.
[18] S.B. Ghelejlu, M. Esmaiili, H. Almasi, Characterization of chitosan-nanoclay bionanocomposite active films containing milk thistle extract, Int. J. Biol. Macromol. 86 (2016) 613-621.
[19] M.H. Lee, S.Y. Kim, H.J. Park, Effect of halloysite nanoclay on the physical,
mechanical, and antioxidant properties of chitosan films incorporated with clove
essential oil. Food Hydrocoll. 84 (2018) 58-67.
[20] Y. Wang, S. Yi, R. Lu, D.E. Sameen, S. Ahmed, J. Dai, Y. Liu, Preparation, characterization, and 3D printing verification of chitosan/halloysite nanotubes/tea polyphenol nanocomposite films, Int. J. Biol. Macromol.166 (2021) 32-44.
[21] C.T. Edelman, J.C. Favejee, On the Crystal Structure of Montmorillonite and halloysite, Zeitschriftfür Kristallographie-crystalline Mater. 102, (1940) 417-431.
[22] M. Segad, B. Jonsson, T. Åkesson, B. Cabane, Ca/Na montmorillonite: structure, forces and swelling properties, Langmuir 26 (2010) 5782-5790.
[23] R. Onnainty, G. Granero, Chitosan-clays based nanocomposites: promising materials for drug delivery applications, Nanomed. Nanotechnol. J. 1 (2017) 114.
[24] D.F. Xie, V.P. Martino, P. Sangwan, C. Way, G.A. Cash, A. Gregory, E. Pollet, K.M. Dean, P.J. Halley, L. Averous, Elaboration and properties of plasticised chitosan-based exfoliated nanobiocomposites, Polym. (United Kingdom) 54 (2013) 3654-3662.
[25] S. Maisanaba, S. Pichardo, M. Puerto, D. Gutiérrez-Praena, A.M. Cameán, A. Jos, Toxicological evaluation of clay minerals and derived nanocomposites: A review, Environ. Res.138 (2015) 233-254.
[26] T.C. Yadav, P. Saxena, A.K. Srivastava, A.K. Singh, R.K. Yadav, Harish, R. Prasad, V. Pruthi. Potential Applications of Chitosan Nanocomposites: Recent Trends and Challenges, in; Shahid-ul-Islam and B.S. Butola (Eds.), Advanced Functional Textiles and Polymers, Scrivener Publishing LLC, 2020, pp. 365-403.
[27] P.K. Dutta, J. Dutta, V.S. Tripathi, Chitin and chitosan: chemistry: properties and applications, J. Sci. Ind. Res. 63 (2004) 20-31
[28] M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci. 31 (2006) 603-632.
[29] R. Jayakumar, D. Menon, K. Manzoor, S.V. Nair, H. Tamura. Biomedical applications of chitin and chitosan-based nanomaterials. A short review, Carbohydr. Polym. 82 (2010) 227-32.
[30] J. Venkatesan, S.-K. Kim, Chitosan composites for bone tissue engineering-an overview, Mar. Drugs. 8 (2010) 2252-66.
[31] G.L. Dotto, L.L.A. Pinto, General consideration about chitosan, in: G.L. Dotto, S.P. Campana-Filho, L.A.A. Pinto (Eds.), Chitosan Based Materials and its Applications. Frontier in biomaterials, Vol 3, Bentham Science Publishers, 2017, pp. 3-33.
[32] S. Kumar, A. Mukherjee, J. Dutta, Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives, Trends in Food Sci. Technol. 97 (2020) 196-209.
[33] V.S. Yeul, S.S. Rayalu, Unprecedented chitin and chitosan: A chemical overview, J. Polym. Environ. 21 (2013) 606-614.
[34] M.R. Kasaai, Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: A review, Carbohydr. Polym. 79 (2010) 801-10.
[35] J. Kumirska, M. Czerwicka, Z. Kaczynski, A. Bychowska, K. Brzozowski, J. Thoming, P. Stepnowski, Application of spectroscopic methods for structural analysis of chitin and chitosan, Mar. Drugs. 8 (2010) 1567-636.
[36] X. Liu, L. Ma, Z. Mao, C. Gao, Chitosan-based biomaterials for tissue repair and regeneration. Chitosan for biomaterials II, in: R. Jayakumar, M. Prabaharan, R.A.A. Muzzarelli (Eds.), Advances in polymer science, Heidelberg, Springer Berlin, 2011, pp. 81-127.
[37] K.V.H. Prashanth, R.N. Tharanathan, Chitin/chitosan: modifications and their unlimited application potential: an overview, Trends Food Sci. Technol. 18 (2007) 117-31.
[38] K. Kurita, T Sannan, Y. Iwakura, Studies on chitin 4: Evidence for formation of block and random copolymers of N-Acetyl-D-glucosamine and D-glucosamine by hetero and homogenous hydrolyses, Makromol. Chem. 178 (1977) 3197-202.
[39] V.V.C. Azevedo, S.A. Chaves, D.C. Bezerra, M.V.L. Fook, A. Costa, Chitin and chitosan: Applications as biomaterials, Rev. Elet. Mater. Proc. 2 (2007) 27-34.
[40] S.K. Shukla, A.K. Mishra, O.A. Arotiba, B.B. Mamba, Chitosan-based nanomaterials: a state-of-the-art review, Int. J. Biol. Macromol. 59 (20113) 46-58.
[41] G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33 (2008) 399-447.
[42] J.S. Piccin, M.L. Vieira, J.O. Goncalves, G.L. Dotto, L.A. Pinto, Adsorption of FD & C Red No. 40 by chitosan: Isotherms analysis, J. Food Eng. 95 (2009) 16-20.
[43] G.L. Dotto, M.L. Vieira, L.A. Pinto, Kinetics and mechanism of tetrazine adsorption onto chitin and chitosan, Ind. Eng. Chem. Eng. 51 (2012) 6862-8.
[44] A.A. Mendes, P.C. Oliveira, H.F. Castro, R.L. Giordano, Application of chitosan as support for immobilization of enzymes of industrial intrest, Quim Nova. 34 (2012) 831-40.
[45] D.L. Hawary, M.A. Motaleb, H. Farag, O.W. Guirguis, M.Z. Elsabee, Water-soluble derivatives of chitosan as a target delivery system of Tc-99m to some organs in vivo for nuclear imaging and biodistribution, J. Radioanal. Nucl. Chem. 290 (2011) 557-567.
[46] R. Hejazi, M. Amiji, Chitosan-based gastrointestinal delivery systems, J. Control. Release. 89: (2003) 151-165.
[47] K.K. Byung, H.J. Shim, M.H. Sang, E.S. Park, Chitin-based embolic materials in the renal artery of rabbits: pathologic evaluation of an absorbable particulate agent, Radiol. 236 (2005) 151-158.
[48] P.V. Kumar, A.A. Bricey, V.V. Selvi, C.S. Kumar, N. Ramesh, Antioxidant effect of green tea extract in cadmium chloride intoxicated rats, Adv. Appl. Sci. Res. 1 (2010) 9-13.
[49] J.A. Jennings, J.D. Bumgardner, Chitosan based biomaterials (Vol 2), in: J.A. Jennings and J.D. Bumgardner (Eds.), Tissue engineering and therapeutics, Woodhead Pub Ltd, Elsevier Science & Technology, Duxford, UK, 2017.
[50] E.F. Franca, L.C.G. Freiras, R.D. Lins, Chitosan molecular structure as a function of n-acetylation, Biopolym. 95 (2011) 448-460
[51] A.V. Il’ina, V.P. Varmalov, Chitosan-based polyelectrolyte complexes: A review, Appl. Biochem. Microbiol. 41 (2005) 5-11.
[52] A.S. Halim, L.C. Keong, I. Zainol, A. Hazri, A.H.A. Rashid, Biocompatibility and biodegradation of chitosan and derivatives, in: B. Sarmento, J.D. Neves, (Eds.) Chitosan-based systems for biopharmaceuticals. Delivery, targeting and polymers therapeutics, Wiley, Chihester, 2012, pp. 57-74.
[53] W.A. Sarhan, H.M. Azzazy, High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydr. Polym. 122 (2015) 135-43.
[54] Y. Chen, Y. Zhou, S. Yang, et al., Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterization and evaluation of biocompatibility, Mater. Sci. Eng. C Mater. Biol. Appl. 66 (2016) 84-91.
[55] I. Bravo-Osuna, C. Vauthier, A. Farabollini, G.F. Palmieri, G. Ponchel, Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles, Biomater. 28 (2007) 2233-2243.
[56] E. Meng-Lund, C. Muff-Westergaard, C. Sander, P. Madelung, J. Jacobsen, A mechanistic based approach for enhancing buccal mucoadhesion of chitosan, Int. J. Pharm. 461 (2014) 280-285.
[57] C. Saikia, P. Gogoi, T.K. Maji, Chitosan: a promising biopolymer in drug delivery applications, J. Mol. Genet. Med. S4:6 (2015) 1-10.
[58] F. Laffleur, F. Hintzen, D. Rahmat, G. Shahnaz, G. Millotti, A. Bernkop-Schnürch, Enzymatic degradation of thiolated chitosan, Drug Develop. Indu. Pharm. 39 (2013) 1531-1539.
[59] E. Szymańska, K. Winnicka, A. Amelian, U. Cwalina, Vaginal chitosan tablets with clotrimazole-design and evaluation of mucoadhesive properties using porcine vaginal mucosa, mucin and gelatine, Chem. Pharm. Bull. 62 (2014) 160-167.
[60] C.L. Domínguez-Delgado, I.M. Rodríguez-Cruz, E. Fuentes-Prado, J.J. Escobar-Chávez, G. Vidal-Romero, L. García-González, R.I. Puente-Lee, Drug Carrier Systems Using Chitosan for Non Parenteral Routes, in: Pharmacology and Therapeutic. Infotech, 2014, pp. 273-325.
[61] D.J. Ormrod, C.C. Holmes, T.E. Miller, Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis, Atherosclerosis. 138 (1998) 329-334.
[62] S.B. Jing, L. Li, D. Ji, Y. Takiguchi, T. Yamaguchi, Effect of chitosan on renal function in patients with chronic renal failure, J. Pharm. Pharmacol. 49 (1997) 721.
[63] Wedmore, J.G. McManus, A.E. Pusateri, J.B. Holcomb, A special report on the chitosan-based hemostatic dressing: Experience in current combat operations. J. Trauma. 60 (2006) 655-658.
[64] K. Arai, T. Kinumaki, T. Fujita, Toxicity of chitosan, Bull. Tokai Region Fish Res. Lab. 56 (1968) 88-94.
[65] K. Sonaje, Y.H. Lin, J.H. Juang, S.P. Wey, C.T. Chen, H.W. Sung, In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery, Biomater. 30 (2009) 2329-39.
[66] L. Illum, N.F. Farraj, S.S. Davis, Chitosan as a novel nasal delivery system for peptide drugs, Pharm. Res. 11 (1994) 1186-9.
[67] K.H. Waibel, B. Haney, M. Moore, B. Whisman, R. Gomez, Safety of chitosan bandages in shellfish allergic patients, Military Medicine. 176 (2001) 1153-1156.
[68] R. Abdeen, N. Salahuddin, Modified chitosan-clay nanocomposite as a drug delivery system intercalation and in vitro release of ibuprofen, J. Chem. (2013) 2013.
[69] S. Olivera, H.B. Muralidhara, K. Venkatesh, V.K. Guna, K. Gopalakrishna, K.Y. Kumar, Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review, Carbohyd. Polym. 153 (2016) 600-618.
[70] Y. Xu, X. Ren, M.A. Hanna, Chitosan/clay nanocomposite film preparation and characterization, J. Appl. Polym. Sci. 99 (2006) 1684-1691.
[71] V.V. Pande, V.M. Sanklecha, Bionanocomposite: A Review, Austin J. Nanomed. Nanotechnol. 5 (2017) 1045.
[72] R. Zhao, T. Peter, P. Halley, Emerging biodegradable materials: starch- and protein-based bio-nanocomposites, J. Mater. Sci. 43 (2008) 3058-3071.
[73] M. Darder, E. Ruiz-hitzky, Investigación Química Bio-nanocomposites: nuevos materiales ecológicos, biocompatibles y funcionales. 103 (2007) 21-29.
[74] P. Camargo, K. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities, Mater. Res. 12 (2009) 1-39.
[75] G. Siqueira, J. Bras, A. Dufresne, Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications, Polym. 2 (2010) 728-765.
[76] K. Basumatary, P. Daimary, S.K. Das, M. Thapa, M. Singh, A. Mukherjee, S. Kumar, Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar-based nanocomposite films for antimicrobial food packaging, Food Packaging and Shelf Life. 17 (2018) 99-106.
[77] A. Naskar, H. Khan, R. Sarkar, S. Kumar, D. Halder, S. Jana, Anti-biofilm activity and food packaging application of room temperature solution process-based polyethylene glycol capped Ag-ZnO-graphene nanocomposite, Mater. Sci. Eng. C. 91 (2018) 743-753
[78] S. Estevez-Areco, L. Guz, L. Famá, R. Candal, S. Goyanes, Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression, Food Hydrocoll. 96 (2019) 518-528.
[79] M. Matet, M.-C. Heuzey, A. Ajji, P. Sarazin, Plasticized chitosan/polyolefin films produced by extrusion, Carbohydr. Polym. 117 (2015) 177-184.
[80] G.B. Khomutov, Interfacially formed organized planar inorganic, polymeric and composite nanostructures, Adv. in Colloid and Interface Sci. 111 (2004) 79-116.
[81] D. Zhang, C. Jiang, Y.E. Sun, Q. Zhou, Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing, J. Alloys Comp. 711 (2017) 652-658.
[82] F.B. Dhieb, E.J. Dil, S.H. Tabatabaei, F. Mighri, A. Ajji, Effect of nanoclay orientation on oxygen barrier properties of LbL nanocomposite coated films, RSC Adv. 9 (2019) 1632-1641.
[83] R. Parhi, Chitin and Chitosan in Drug Delivery, in; G. Crini, E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 36-Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment, Springer Nature Switzerland AG, 2019, pp. 175-240.
[84] L.N. Mengatto, I.M. Helbling, J.A. Luna, Recent advances in chitosan films for controlled release of drugs, Recent Pat. Drug Deliv. Formulation 6 (2012) 156-170.
[85] S.P. Noel, H. Courtney, J.D. Bumgardner, W.O. Haggard, Chitosan films a potential local drug delivery system for antibiotics, Clin. Orthop. Relat. Res. 466 (2008) 1377-1382.
[86] A. Ali, S. Ahmed, A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol. 109 (2018) 273-286.
[87] N. Sultana, M. Mokhtar, M.I. Hassan, R.M. Jin, F. Roozbahani, T.H. Khan, Chitosan-Based Nanocomposite Scaffolds for Tissue Engineering Applications, Mater. Manufact. Process. 30 (2015) 273-278.
[88] M.V. Dias, V.M. Azevedo, S.V. Borges, N. de Fátima Ferreira Soares, R.V. de Barros Fernandes, J.J. Marques, É.A.A. Medeiros, Development of chitosan/montmorillonite nanocomposites with encapsulated a-tocopherol, Food Chem. 165 (2014) 323-329.
[89] G. Thakur, A. Singh, I. Singh, Chitosan-Montmorillonite polymer composites: formulation and evaluation of sustained release tablets of aceclofenac, Sci. Pharm. 84 (2016) 603-617.
[90] G.V. Joshi, B.D. Kevadiya, H.M. Mody, H.C. Bajaj, Confinement and controlled release of quinine on chitosan-montmorillonite bionanocomposites, J. Polym. Sci. Part A Polym. Chem. 50 (2012) 423-430.
[91] C. Luo, Q. Yang, X. Lin, C. Qi, G. Li, Preparation and drug release property of tanshinone IIA loaded chitosan montmorillonite microspheres, Int. J. Biol. Macromol. 125 (2019) 721-729.
[92] S. Jahanizadeh, F. Yazdian, A. Marjani, M. Omidi, H. Rashedi, Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation, Int. J. Biol. Macromol. 105 (2017) 757-763.
[93] J. Kolahi, A. Soolari, Rinsing with chlorhexidinegluconate solution after brushing and flossing teeth: a systematic review of effectiveness, Quintessence Int. 37 (2006) 605-612.
[94] S. Sedaghat, Preparation of chitosan/ Montmorillonite (MMt) nanocomposite as a drug delivery carrier of podophyllotoxin, Asian J. Appl. Sci. 6 (2018) 86-96.
[95] F.F. Azhar, A. Olad, A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate-chitosan/montmorillonite nanocomposite systems, Appl. Clay Sci., 101 (2014) 288-296.
[96] D. Cheikh, F. García-Villén, H. Majdoub, C. Viseras, M.B. Zayani, Chitosan/beidellite nanocomposite as diclofenac carrier, Int. J. Biol. Macromol. 126 (2019) 44-53.
[97] C. Aguzzi, P. Capra, C. Bonferoni, P. Cerezo, I. Salcedo, R. Sanchez, C. Caramella, C. Viseras, Chitosan-silicate biocomposites to be used in modified drug release of 5-aminosalicylic acid (5-ASA), Appl. Clay Sci. 50 (2010) 106-111.
[98] K.-H. Liu, T.-Y. Liu, S.-Y. Chen, D.-M. Liu, Drug release behavior of chitosan-montmorillonite nanocomposite hydrogels following electrostimulation, Acta Biomater. 4 (2008) 1038-1045.
[99] S. Hua, H. Yang, W. Wang, A. Wang, Controlled release of ofloxacin from chitosan-montmorillonite hydrogel, Appl. Clay Sci. 50 (2010) 112-117.
[100] Z. Sun, C. Shi, X. Wang, Q. Fang, J. Huang, Synthesis, characterization, and antimicrobial activities of sulfonated chitosan, Carbohydr. Polym. 155 (2017) 321.
[101] S.-h. Hsu, M.-C. Wang, J.-J. Lin, Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites, Appl. Clay Sci. 56 (2012) 53-62.
[102] E.A. Abd Elsalam, H.F. Shabaiek, M.M. Abdelaziz, I.A. Khalil, I.M. El-Sherbiny, Fortified hyperbranched PEGylated chitosan-based nano-in-micro composites for treatment of multiple bacterial infections, Int. J. Biol. Macromol. 148 (2020) 1201-1210.
[103] Y. Ling, Y. Luo, J. Luo, X. Wang, R. Sun, Novel antibacterial paper based on quaternized carboxymethyl chitosan/organic montmorillonite/Ag NP nanocomposites, Industr. Crops Prod. 51 (2013) 470-479.
[104] A. Giannakas, M. Vlacha, C. Salmas, A. Leontiou, P. Katapodis, H. Stamatis, N.-M. Barkoula, A. Ladavos, Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites, Carbohydr. Polym. 140 (2016) 408-415.
[105] L. Zhang, J. Chen, W. Yu, Q. Zhao, J. Liu, Antimicrobial Nanocomposites Prepared from Montmorillonite/Ag+/Quaternary Ammonium Nitrate, J. Nanomater. 2018;2018.
[106] G. Sandri, M.C. Bonferoni, F. Ferrari, S. Rossi, C. Aguzzi, M. Mori, P. Grisoli, P. Cerezo, M. Tenci, C. Viseras, C. Caramella, Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties, Carbohydr. Polym. 102 (2014) 970-977.
[107] S. Noori, M. Kokabi, Z. M. Hassan, Nanoclay enhanced the mechanical properties of Poly(Vinyl Alcohol)/Chitosan/Montmorillonite nanocomposite hydrogel as wound dressing, Procedia Mater. Sci. 11 (2015) 152-156.
[108] Z.K. Cui, S. Kim, J.J. Baljon, B.M. Wu, T. Aghaloo, M. Lee, Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering, Nat. Commun. 10 (2019) 1-10.
[109] S. Kar, T. Kaur, A. Thirugnanam, Microwave-assisted synthesis of porous chitosan-modified montmorillonite-hydroxyapatite composite scaffolds, Int. J. Biol. Macromol. 82 (2016) 628-636.
[110] A.A.S. Bano, S.S. Poojary, D. Kumar, Y.S. Neg, Effect of incorporation of montmorillonite on Xylan/Chitosan conjugate scaffold, Colloids and Surfaces B: Biointerf. 180 (2019) 75-82.
[111] A. Nouri, M.T. Yaraki, M. Ghorbanpour, S. Agarwal, V.K. Gupta, Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite, Int. J. Biol. Macromol. 109 (2018) 1219-1231.
[112] F.-Z. Semlali, A. Hassani, K. El Bourakadi, N. Merghoub, A. el kacem Qaiss, R. Bouhfid, Effect of chitosan/modified montmorillonite coating on the antibacterial and mechanical properties of date palm fiber trays, Int. J. Biol. Macromol. 148 (2020) 316-323.
[113] P. Wang, H. Wang, J. Liu, P. Wang, S. Jiang, X. Li, S. Jiang, Montmorillonite@chitosan-poly (ethylene oxide) nanofibrous membrane enhancing poly (vinyl alcohol-co-ethylene) composite film, Carbohydr. Polym.181 (2018) 885-892.
[114] D. Xu, H. Qin, D. Ren, Prolonged preservation of tangerine fruits using chitosan/montmorillonitecomposite coating, Postharvest Biol. Technol. 143 (2018) 50-57.
[115] M. Zhou, Q. Liu, S. Wu, Z. Gou, X. Wu, D. Xu, Starch/chitosan films reinforced with polydopamine modified MMT: Effects of dopamine concentration, Food Hydrocoll. 61 (2016) 678-684.
[116] Y. Kasirga, A. Oral, C. Caner, Preparation and characterization of chitosan/ montmorillonite-K10 nanocomposites films for food packaging applications, Polym. Compos. 33 (2012) 1874-1882.
[117] J. Salvé, B. Grégoire, L. Imbert, F. Hubert, V. Karpel, N. Leitner, M. Leloup, Design of hybrid Chitosan-Montmorillonite materials for water treatment: Study of the performance and stability, Chem. Eng. J. Adv. 6 (2021) (September 2020) 100087.
[118] N. Rong, C. Chen, K. Ouyang, K. Zhang, X. Wang, Z. Xu, Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment, Separat. Purific. Technol. 274 (2021) 119120.
[119] A.M. Shehap, R.A. Nasr, M.A. Mahfouz, A.M. Ismail, Preparation and characterizations of high doping chitosan/MMT nanocomposites films for removing iron from ground water, J. Environ. Chem. Eng. 9 (2021) 1104700.
[120] L. Wang, J. Zhang, A. Wang, Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite, Colloids Surfaces A. Physicochem. Eng. Asp. 322 (2008) 47-53.