Montmorillonite-Cellulose based Nano-Composites and Applications

$30.00

Montmorillonite-Cellulose based Nano-Composites and Applications

Purnima Baruah, Debajyoti Mahanta

Exploration of different types of polymer-clay nanocomposites have already crossed several decades. In recent times, more emphasis is given in the research of different bio-based polymer nanocomposites as they exhibit eco-friendly biodegradable behavior and biocompatible features. Cellulose is the most copiously available bio-macromolecule with interesting functional, chemical, mechanical and biological properties. Incorporation of montmorillonite clay as nanofillers into cellulose matrix results in significant modification and reinforcement in various properties of the polymer enlarging its applicability. This chapter brings forth a concise account on the development of different montmorillonite-cellulose based nano-composites as prospective materials for multiple biomedical and engineering applications.

Keywords
Cellulose, Montmorillonite, Nanocomposites, Biodegradable, Wound-Healing, Bioplastic, Flame-Retardant

Published online 6/2/2022, 21 pages

Citation: Purnima Baruah, Debajyoti Mahanta, Montmorillonite-Cellulose based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 302-322, 2022

DOI: https://doi.org/10.21741/9781644901915-13

Part of the book on Advanced Applications of Micro and Nano Clay

References
[1] V. Mittal, Polymer layered silicate nanocomposites: a review, Materials 2 (2009) 992-1057. https://doi.org/10.3390/ma2030992
[2] S. Pavlidou, C. D. Papaspyrides, A review on polymer-layered silicate nanocomposites, Prog. Polym. Sci. 33 (2008) 1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008
[3] H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad, A. Dufresne, Recent developments on nanocellulose reinforced polymer nanocomposites: A review, Polymer. 132 (2017) 368-93. https://doi.org/10.1016/j.polymer.2017.09.043
[4] D. Klemm, B. Heublein, H. P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed. 36 (2005) 3358-3393. https://doi.org/10.1002/anie.200460587
[5] S. S. Ray, M. Okamoto, Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing, Prog. Polym. Sci. 28 (2003) 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
[6] D. Paul, L. M. Robeson, Polymer nanotechnology: Nanocomposites, POLYMER 49 (2008) 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
[7] S. S. Ray, M. Bousmina, K. Okamoto, Structure and Properties of Nanocomposites Based on Poly(butylene succinate-co-adipate) and Organically Modified Montmorillonite, Macromol. Mater. Eng. 290 (2005) 759-768. https://doi.org/10.1002/mame.200500203
[8] I. Algar, C. Garcia-Astrain, A. Gonzalez, L. Martin, N. Gabilondo, A. Retegi, A. Eceiza, Improved Permeability Properties for Bacterial Cellulose/ Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling, J. Renew. Mater. 4 (2016) 57-65. https://doi.org/10.7569/JRM.2015.634124
[9] F. UDDIN, Clays, nanoclays, and montmorillonite minerals, Metall. Mater. Trans. A 39A (2008) 2804-2814. https://doi.org/10.1007/s11661-008-9603-5
[10] K. Strawhecker, E. Manias, Structure and properties of poly (vinyl alcohol)/Na- montmorillonite nanocomposites, Chem. Mater. 12 (2000) 2943-2949. https://doi.org/10.1021/cm000506g
[11] M. A. Siddiqui, Z. Ahmed, Mineralogy of the Swat kaolin deposits, Pakistan, Arab. J. Sci. Eng. 30 (2005) 195-218.
[12] H. S. Qian, S. H. Yu, L. B. Luo, J. Y. Gong, L. F. Fei, Synthesis of uniform Te-Carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose, Chem. Mater. 18 (2006) 2102-2108. https://doi.org/10.1021/cm052848y
[13] X. Q. Qian, F. C. Hu, F. Y. Tian, D. F. Hou, D. S. Li, Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets, Rsc Adv. 6 (2016) 11631-11636. https://doi.org/10.1039/C5RA24328A
[14] Z. Yang, W. Wang, X. Tai, G. Wang, Preparation of modified montmorillonite with different quaternary ammonium salts and application in Pickering emulsion, New J. Chem. 43 (2019) 11543-11548. https://doi.org/10.1039/C9NJ01606F
[15] A. Okada, A. Usuki, Twenty years of polymer-clay nanocomposites, Macromol. Mater. Eng. 291 (2006) 1449−1476. https://doi.org/10.1002/mame.200600260
[16] J. L. Suter, D. Groen, P. V. Coveney, Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties, Adv. Mater. 27 (2015) 966−984. https://doi.org/10.1002/adma.201403361
[17] A. J. Benítez, A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space, J. Mater. Chem. A 5 (2017) 16003−16024. https://doi.org/10.1039/C7TA02006F
[18] P. Cerruti, V. Ambrogi, A. Postiglione J. Rychly, L. M. Rychla, C. Carfagna, Morphological and thermal properties of cellulose−montmorillonite nanocomposites, Biomacromolecules 9 (2008) 3004-3013. https://doi.org/10.1021/bm8002946
[19] D. Xu, S. Wang, L. A. Berglund, Q. Zhou, Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets, ACS Appl. Mater. Interfaces 13 (2021) 4463−4472. https://doi.org/10.1021/acsami.0c18594
[20] R. B. Romero, C. A. Paula Leite, M. C. Gonçalves, The effect of the solvent on the morphology of cellulose acetate/montmorillonite nanocomposites, Polymer 50 (2009) 161-170. https://doi.org/10.1016/j.polymer.2008.10.059
[21] R. Krishnamoorti, J. Ren, A. S. Silva, Linear viscoelasticity of disordered polystyrene−polyisoprene block copolymer based layered-silicate nanocomposites, Macromolecules 33 (2000) 3739-3946. https://doi.org/10.1021/ma992091u
[22] N. Khodamoradi, V. Babaeipour, M. Sirousazar, Bacterial cellulose/montmorillonite bionanocomposites prepared by immersion and in-situ methods: structural, mechanical, thermal, swelling and dehydration properties, Cellulose 13 (2019) 7847 – 7861. https://doi.org/10.1007/s10570-019-02666-9
[23] S. K. Kumar, S. Kalidhasan, V. Rajesh, N. Rajesh, Application of Cellulose-Clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater, Ind. Eng. Chem. Res. 51 (2012), 58-69. https://doi.org/10.1021/ie201349h
[24] M. Goswami, A. Das, Chemistry, Medicine Carbohydrate polymersSynthesis and characterization of a biodegradable Cellulose acetate-montmorillonite composite for effective adsorption of Eosin Y., 206 (2019) https://doi.org/10.1016/j.carbpol.2018.11.040
[25] Q. Wang, Y. Wang, L. Chen, A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent Carbohydrate polymers, 210 (2019) 314-321. https://doi.org/10.1016/j.carbpol.2019.01.080
[26] Y. Pan, H. Xie, H. Liu, P. Cai, H. Xiao, Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems, Bioresour. Technol. 286 (2019) 121366. https://doi.org/10.1016/j.biortech.2019.121366
[27] P. Sirajudheen, P. Karthikeyan, M. C. Basheer, S. Meenakshi, Adsorptive removal of anionic azo dyes from effluent water using Zr(IV) encapsulated carboxymethyl cellulose-montmorillonite composite, J. Environ. Chem. Ecotoxicol. 2 (2020) 73-82. https://doi.org/10.1016/j.enceco.2020.04.002
[28] M. Ul-Islam, T. Khan, J. K. Park, Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications, Carbohydrate Polymers 89 (2012) 1189- 1197. https://doi.org/10.1016/j.carbpol.2012.03.093
[29] W. Sajjad, T. Khan, M. Ul-Islam, R. Khan, Z. Hussain, A. Khalid, F. Wahid, Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration, Carbohydr. Polym. 206 (2019) 548-556. https://doi.org/10.1016/j.carbpol.2018.11.023
[30] J. F. Siqueira, H. P. Lopes, Mechanisms of antimicrobial activity of calcium hydroxide: a critical review, International Endodontic Journal 32 (1999) 361-369. https://doi.org/10.1046/j.1365-2591.1999.00275.x
[31] G. Borkow, N. Okon-Levy, J. Gabbay, Copper oxide impregnated wound dressing: biocidal and safety studies, Wounds. 22 (2010) 301-310.
[32] J. Cabezas-Pizarro, M. Redondo-Solano, C Umaña-Gamboa, M. L. Arias-Echandi, Antimicrobial activity of different sodium and potassium salts of carboxylic acid against some common foodborne pathogens and spoilage-associated bacteria, Revista Argentina de Microbiologia, 50 (2018) 56-61. https://doi.org/10.1016/j.ram.2016.11.011
[33] T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 72 (2008) 43-51. https://doi.org/10.1016/j.carbpol.2007.07.025
[34] D. Demircan, S. Ilk, B. Zhang, Cellulose-organic montmorillonite nanocomposites as biomacromolecular quorum-sensing inhibitor, Biomacromolecules 18 (2017) 3439-3446. https://doi.org/10.1021/acs.biomac.7b01116
[35] B. LaSarre, M. J. Federle, Exploiting quorum sensing to confuse bacterial pathogens, Microbiol. Mol. Biol. Rev. 77 (2013) 73−111. https://doi.org/10.1128/MMBR.00046-12
[36] F. Nazzaro, F. Fratianni, R. Coppola, Quorum sensing and phytochemicals, Int. J. Mol. Sci. 14 (2013) 12607−12619. https://doi.org/10.3390/ijms140612607
[37] J. Olivero-Verbel, A. Barreto-Maya, A. Bertel-Sevilla, E. E. Stashenko, Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba, Braz. J. Microbiol. 45 (2014) 759−767. https://doi.org/10.1590/S1517-83822014000300001
[38] E. Cavaleiro, A. S. Duarte, A. C. Esteves, A. Correia, M. J. Whitcombe, V. Elena, A. Sergey, I. Chianella, Novel linear polymers able to inhibit bacterial quorum sensing. Macromol. Biosci. 15 (2015) 647−656. https://doi.org/10.1002/mabi.201400447
[39] N. Amara, B. P. Krom, G. F. Kaufmann, M. M. Meijler, Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond, Chem. Rev. 111 (2011) 195−208. https://doi.org/10.1021/cr100101c
[40] S. Ilk, N. Sağlam, M. Ozgen, F. Korkusuz, Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol, Int. J. Biol. Macromol. 94 (2017) 653−662. https://doi.org/10.1016/j.ijbiomac.2016.10.068
[41] M. Horue, M. L. Cacicedo, M. A. Fernandez, B. R. Kladniew, R. M. T. Sánchez, G. R. Castro, Antimicrobial activities of bacterial cellulose – Silver montmorillonite nanocomposites for wound healing, Mater. Sci. Eng. C 116 (2020) 111152-111178. https://doi.org/10.1016/j.msec.2020.111152
[42] A. M. Fernández Solarte, J. Villarroel-Rocha, C. Fernández Morantes, M. L. Montes, K. Sapag, G. Curutchet, R. M. Torres Sánchez, Insight into surface and structural changes of montmorillonite and organomontmorillonites loaded with Ag, C. R. Chimie. 22 (2019) 142-153. https://doi.org/10.1016/j.crci.2018.09.006
[43] Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba, Biodegradability of Plastics, Int. J. Mol. Sci. 10 (2009) 3722-3742. https://doi.org/10.3390/ijms10093722
[44] Q. Wang, J. Cai, L. Zhang, M. Xu, H. Cheng, C. C. Han, S. Kuga, J. Xiao, R. Xiao, A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure, J. Mater. Chem. A 1(2013) 6678-6686. https://doi.org/10.1039/c3ta11130j
[45] Q. Wang, J. Guo, D. Xu, J. Cai, Y. Qiu, J. Ren, L. Zhang, Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties, Cellulose 22 (2015) 3799-3810. https://doi.org/10.1007/s10570-015-0758-0
[46] K. Wu, Z. Wang, H. Liang Microencapsulation of ammonium polyphosphate: preparation, characterization, and its flame retardance in polypropylene, Polym. Compos. 29 (2008) 854-860. https://doi.org/10.1002/pc.20459
[47] L. Wang, M. Sánchez‐Soto, J. Fan, Z. P. Xia, Y. Liu, Boron/nitrogen flame retardant additives cross‐linked cellulose nanofibril/montmorillonite aerogels toward super‐low flammability and improved mechanical properties, Polym. Adv. Technol. 30 (2019) 1807-1817. https://doi.org/10.1002/pat.4613