Kaolinite-Cellulose based Nano–Composites and Applications


Kaolinite-Cellulose based Nano–Composites and Applications

Mriganka Sekhar Manna, Susanta Ghanta

This chapter is intended to detail the properties of kaolinite-cellulose nano-composite, its preparation, characterization, and applications in various fields. The fields of applications cover the conventional areas of application like wastewater treatment, biomedical application, fuel cells as well as in advanced applications e.g. in the fields of packaging, flame retardant, printed electronics, etc. The brisk viewpoints on the challenges to fabricate nanostructured kaolinite, nanostructure cellulose, and their composite as well are discussed. The direction to tackle the said challenges and updates on the recently developed applications of kaolinite-cellulose nano-composites are discussed.

Cellulose Nanocrystals, Cellulose Nanofibers, Nano-Cellulose, Nano Fibrillated Cellulose, Nano-Structure Kaolinite, Clay Minerals, Nano-Composite, Adsorption, Wastewater Treatment

Published online 6/2/2022, 27 pages

Citation: Mriganka Sekhar Manna, Susanta Ghanta, Kaolinite-Cellulose based Nano–Composites and Applications, Materials Research Foundations, Vol. 125, pp 275-301, 2022

DOI: https://doi.org/10.21741/9781644901915-12

Part of the book on Advanced Applications of Micro and Nano Clay

[1] P.V.K. Kumari, Y.S. Rao, S. Akhila, Role of nanocomposites in drug delivery, GSC Biol. Pharm.Sci. 8 (2019) 94-103.https://doi.org/10.30574/gscbps.2019.8.3.0150
[2] C. Lazaratou, D. Vayenas, D. Papoulis, The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review, Appl. Clay Sci. 185 (2020) 105377.https://doi.org/10.1016/j.clay.2019.105377
[3] M. Borjesson, G. Westman, Crystalline nanocellulose-preparation, modification, and properties, in: M. Poletto, H.L.O. Junior (Eds.), Cellulose-Fundamental Aspects and Current Trends, Rijeka, Croatia, 2015, pp.159-191.https://doi.org/10.5772/61899
[4] M. P. Gashti, S. Moradian, Effect of nanoclay type on dyeability of polyethylene terephthalate/clay nanocomposites, J. Appl. Polym. Sci.125 (2012) 4109-4120.https://doi.org/10.1002/app.35493
[5] M. Parvinzadeh, S. Moradian, A. Rashidi, M.-E. Yazdanshenas, Effect of the addition of modified nanoclays on the surface properties of the resultant polyethylene terephthalate/clay nanocomposites, Polym. Plast. Technol. Eng. 49 (2010) 874-884.https://doi.org/10.1080/03602551003664628
[6] M.N.F. Norrrahim, N.A.M. Kasim, V.F. Knight, M.S.M. Misenan, N. Janudin, N.A.A. Shah, N. Kasim, W.Y.W. Yusoff, S.A.M. Noor, S.H. Jamal, K.K. Ong, W.M.Z.W. Yunus, Nanocellulose: a bioadsorbent for chemical contaminant remediation, RSC Adv.11 (2021) 7347-7368.https://doi.org/10.1039/D0RA08005E
[7] K.P.Y. Shak, Y.L. Pang, S.K. Mah, Nanocellulose: Recent advances and its prospects in environmental remediation, Beilstein J. Nanotechnol. 9 (2018) 2479-2498.https://doi.org/10.3762/bjnano.9.232
[8] M.R. Abukhadra, A.F. Allah, Synthesis and characterization of kaolinite nanotubes (KNTs) as a novel carrier for 5-fluorouracil of high encapsulation properties and controlled release, Inorg. Chem. Commun. 103 (2019) 30-36.https://doi.org/10.1016/j.inoche.2019.03.005
[9] M.R. Abukhadra, M. Mostafa, Effective decontamination of phosphate and ammonium utilizing novel muscovite/phillipsite composite; equilibrium investigation and realistic application, Sci. Total Environ. 667 (2019) 101-111.https://doi.org/10.1016/j.scitotenv.2019.02.362
[10] M. Shaban, M.I. Sayed, M.G. Shahien, M.R. Abukhadra, Z.M. Ahmed, Adsorption behavior of inorganic-and organic-modified kaolinite for congo red dye from water, kinetic modeling, and equilibrium studies, J. Sol-Gel Sci. Technol. 87 (2018) 427-441.https://doi.org/10.1007/s10971-018-4719-6
[11] G.Varga, The structure of kaolinite and metakaolinite, Epitoanyag, 59 (2007) 6-9.https://doi.org/10.14382/epitoanyag-jsbcm.2007.2
[12] S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641.https://doi.org/10.1016/j.progpolymsci.2003.08.002
[13] J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous photo-fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Appl. Catal. B: Environ. 98 (2010) 10-26.https://doi.org/10.1016/j.apcatb.2010.05.004
[14] R. Ismail, W. Almaqtri, M. Hassan, Kaolin and bentonite catalysts efficiencies for the debutylation of 2-tert-butylphenol, Chem. Int. 7 (2021) 21-29.
[15] M.P. Gashti, A. Elahi, M.P. Gashti, UV radiation inducing succinic acid/silica-kaolinite network on cellulose fiber to improve the functionality, Compos. B. Eng. 48 (2013) 158-166.https://doi.org/10.1016/j.compositesb.2012.12.002
[16] M.R. Abukhadra, A. AlHammadi, A.M. El-Sherbeeny, M.A. Salam, M.A. El-Meligy, E.M. Awwad, M. Luqman, Enhancing the removal of organic and inorganic selenium ions using an exfoliated kaolinite/cellulose fibres nanocomposite, Carbohydr. Polym. 252 (2021) 117163.https://doi.org/10.1016/j.carbpol.2020.117163
[17] H. Han, M.K. Rafiq, T. Zhou, R. Xu, O. Mašek, X. Li, A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants, J. Hazard. Mater. 369 (2019) 780-796.https://doi.org/10.1016/j.jhazmat.2019.02.003
[18] D. Tan, P. Yuan, F. Annabi-Bergaya, D. Liu, H. He, High-capacity loading of 5-fluorouracil on the methoxy-modified kaolinite, Appl. Clay Sci. 100 (2014) 60-65.https://doi.org/10.1016/j.clay.2014.02.022
[19] M.R. Abukhadra, B.M. Bakry, A. Adlii, S.M. Yakout, M.E. El-Zaidy, Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water, J. Hazard. Mater. 374 (2019) 296-308.https://doi.org/10.1016/j.jhazmat.2019.04.047
[20] S. Gu, X. Kang, L. Wang, E. Lichtfouse, C. Wang, Clay mineral adsorbents for heavy metal removal from wastewater: a review, Environ. Chem. Lett. 17 (2019) 629-654.https://doi.org/10.1007/s10311-018-0813-9
[21] B. Sarkar, R. Rusmin, U.C. Ugochukwu, R. Mukhopadhyay, K.M. Manjaiah, Modified clay minerals for environmental applications, in: M. Mercurio, B. Sarkar, A. Langella (Eds.) Modified Clay and Zeolite Nanocomposite Materials, Elsevier, 2019, pp. 113-127.https://doi.org/10.1016/B978-0-12-814617-0.00003-7
[22] Y. Wang, S. Li, H. Yang, In situ stabilization of some mercury-containing soils using organically modified montmorillonite loading by thiol-based material, J. Soils Sediments, 19 (2019) 1767-1774.https://doi.org/10.1007/s11368-018-2150-9
[23] D.J. Cosgrove, Re-constructing our models of cellulose and primary cell wall assembly, Curr. Opin. Plant Biol. 22 (2014) 122-131.https://doi.org/10.1016/j.pbi.2014.11.001
[24] K. Dhali, M. Ghasemlou, F. Daver, P. Cass, B. Adhikari, A review of nanocellulose as a new material towards environmental sustainability, Sci. Total Environ. (2021) 145871.https://doi.org/10.1016/j.scitotenv.2021.145871
[25] M. He, G. Yang, B.-U. Cho, Y.K. Lee, J.M. Won, Effects of addition method and fibrillation degree of cellulose nanofibrils on furnish drainability and paper properties, Cellulose, 24 (2017) 5657-5669.https://doi.org/10.1007/s10570-017-1495-3
[26] R. Ilyas, S. Sapuan, M. Sanyang, M. Ishak, Nanocrystalline cellulose reinforced starch-based nanocomposite: A review, 5th Postgraduate seminar on natural fiber composites, Universiti Putra Malaysia Serdang, Selangor, 2016, pp. 82-87.
[27] L. Mo, H. Pang, Y. Tan, S. Zhang, J. Li, 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu (II) ions from water, Chem. Eng. J. 378 (2019) 122157.https://doi.org/10.1016/j.cej.2019.122157
[28] H. Voisin, L. Bergström, P. Liu, A.P. Mathew, Nanocellulose-based materials for water purification, Nanomaterials, 7 (2017) 57.https://doi.org/10.3390/nano7030057
[29] N. Mahfoudhi, S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review, Cellulose, 24 (2017) 1171-1197.https://doi.org/10.1007/s10570-017-1194-0
[30] N. Lin, J. Huang, A. Dufresne, Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review, Nanoscale, 4 (2012) 3274-3294.https://doi.org/10.1039/c2nr30260h
[31] R. Rusli, S.J. Eichhorn, Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy, Appl. Phys. Lett. 93 (2008) 033111.https://doi.org/10.1063/1.2963491
[32] H. Ibrahim, N. Sazali, I. Ibrahim, M.S. Sharip, Nano-structured cellulose as green adsorbents for water purification: A mini review, J. Appl. Membr. Sci. Technol. 23 (2019).https://doi.org/10.11113/amst.v23n2.154
[33] T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures, Membranes, 2 (2012) 804-840.https://doi.org/10.3390/membranes2040804
[34] C. Driemeier, J. Bragatto, Crystallite width determines monolayer hydration across a wide spectrum of celluloses isolated from plants, J. Phys. Chem. B, 117(1) (2013) 415-421.https://doi.org/10.1021/jp309948h
[35] T.C. Maloney, H. Paulapuro, The formation of pores in the cell wall, J. Pulp Pap. Sci. 25 (1999) 430-436.
[36] E.L. Lindh, C. Terenzi, L. Salmén, I. Furo, Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2 H MAS NMR, Phys. Chem. Chem. Phys. 19 (2017) 4360-4369.https://doi.org/10.1039/C6CP08219J
[37] D. Vural, C. Gainaru, H. O’Neill, Y. Pu, M.D. Smith, J.M. Parks, S.V. Pingali, E. Mamontov, B.H. Davison, A.P. Sokolov, A.J. Ragauskas, J.C. Smith, L. Petridis, Impact of hydration and temperature history on the structure and dynamics of lignin, Green Chem. 20 (2018) 1602-1611.https://doi.org/10.1039/C7GC03796A
[38] A. Paajanen, S. Ceccherini, T. Maloney, J.A. Ketoja, Chirality and bound water in the hierarchical cellulose structure, Cellulose, 26 (2019) 5877-5892.https://doi.org/10.1007/s10570-019-02525-7
[39] N. Grishkewich, N. Mohammed, J. Tang, K.C. Tam, Recent advances in the application of cellulose nanocrystals, Curr. Opin. Colloid Interface Sci. 29 (2017) 32-45.https://doi.org/10.1016/j.cocis.2017.01.005
[40] J.N. Putro, S.P. Santoso, F.E. Soetaredjo, S. Ismadji, Y.-H. Ju, Monitoring, management, nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal, Environ. Nanotechnol. Monit. Manag. 12 (2019) 100260.https://doi.org/10.1016/j.enmm.2019.100260
[41] J. Luo, K. Huang, X. Zhou, Y. Xu, Elucidation of oil-in-water emulsions stabilized with celery cellulose, Fuel, 291 (2021) 120210.https://doi.org/10.1016/j.fuel.2021.120210
[42] S. Jodeh, O. Hamed, A. Melhem, R. Salghi, D. Jodeh, K. Azzaoui, Y. Benmassaoud, K. Murtada, Magnetic nanocellulose from olive industry solid waste for the effective removal of methylene blue from wastewater, Environ. Sci. & Pollut. Res. 25 (2018) 22060-22074.https://doi.org/10.1007/s11356-018-2107-y
[43] A.W. Carpenter, C.-F. de Lannoy, M.R. Wiesner, Cellulose nanomaterials in water treatment technologies, Environ. Sci. Technol. 49 (2015) 5277-5287.https://doi.org/10.1021/es506351r
[44] O. Nechyporchuk, M.N. Belgacem, J. Bras, Production of cellulose nanofibrils: A review of recent advances, Ind. Crops Prod. 93 (2016) 2-25.https://doi.org/10.1016/j.indcrop.2016.02.016
[45] M. Fan, D. Dai, A.Yang, High strength natural fiber composite: defibrillation and its mechanisms of nano cellulose hemp fibers, Int. J. Polym. Mater. 60 (2011) 1026-1040.https://doi.org/10.1080/00914037.2010.551347
[46] P. Liu, H. Sehaqui, P. Tingaut, A. Wichser, K. Oksman, A.P. Mathew, Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption, Cellulose, 21 (2014) 449-461.https://doi.org/10.1007/s10570-013-0139-5
[47] X.Y. Tan, S.B. Abd Hamid, C.W. Lai, Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis, Biomass Bioenergy, 81 (2015) 584-591.https://doi.org/10.1016/j.biombioe.2015.08.016
[48] M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P.T. Larsson, O. Ikkala, T. Lindstrom, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules, 8 (2007) 1934-1941.https://doi.org/10.1021/bm061215p
[49] M. Henriksson, G. Henriksson, L. Berglund, T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, Eur. Polym. J. 43 (2007) 3434-3441.https://doi.org/10.1016/j.eurpolymj.2007.05.038
[50] J. Feng, S.T. Nguyen, Z. Fan, H.M. Duong, Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels, Chem. Eng. J. 270 (2015) 168-175.https://doi.org/10.1016/j.cej.2015.02.034
[51] D.O. Castro, Z. Karim, L. Medina, J.-O. Häggström, F. Carosio, A. Svedberg, L. Wågberg, D. Söderberg, L.A. Berglund, The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites, Compos. Sci. Technol. 162 (2018) 215-224.https://doi.org/10.1016/j.compscitech.2018.04.032
[52] E. Abu-Danso, S. Peräniemi, T. Leiviskä, T. Kim, K.M. Tripathi, A. Bhatnagar, Synthesis of clay-cellulose biocomposite for the removal of toxic metal ions from aqueous medium, J. Hazard. Mater. 381 (2020) 120871.https://doi.org/10.1016/j.jhazmat.2019.120871
[53] D. Wanna, C. Alam, D.M. Toivola, P. Alam, Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials, Adv. Nat. Sci: Nanosci. Nanotechnol. 4 (2013) 045002.https://doi.org/10.1088/2043-6262/4/4/045002
[54] K. Taleb, J. Markovski, Z. Veličković, J. Rusmirović, M. Rančić, V. Pavlović, A. Marinković, Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size, Arab. J. Chem. 12 (2019) 4675-4693.https://doi.org/10.1016/j.arabjc.2016.08.006
[55] F. Tanaka, T. Fukuse, H. Wada, M. Fukushima, The history, mechanism and clinical use of oral 5-fluorouracil derivative chemotherapeutic agents, Curr. Pharm. Biotechnol. 1 (2000) 137-164.https://doi.org/10.2174/1389201003378979
[56] D. Tan, P. Yuan, D. Liu, P. Du, Surface modifications of halloysite, in: P. Yuan, A. Thill, F. Bergaya (Eds.), Developments in clay science, Elsevier 2016, pp. 167-201.https://doi.org/10.1016/B978-0-08-100293-3.00008-X
[57] S.P. Chandran, S.B. Natarajan, S. Chandraseharan, M.S.B.M. Shahimi, Nano drug delivery strategy of 5-fluorouracil for the treatment of colorectal cancer, J. Cancer Res. Pract. 4 (2017) 45-48.https://doi.org/10.1016/j.jcrpr.2017.02.002
[58] B.N. Jung, H.W. Jung, D. Kang, G.H. Kim, J.K. Shim, Synergistic effect of cellulose nanofiber and nanoclay as distributed phase in a polypropylene based nanocomposite system, Polymers, 12 (2020) 2399.https://doi.org/10.3390/polym12102399
[59] C.Q. Yang, Q. He, R.E. Lyon, Y. Hu, Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry, Polym. Degrad. Stab. 95 (2010) 108-115.https://doi.org/10.1016/j.polymdegradstab.2009.11.047
[60] R. Kozłowski, M. Władyka‐Przybylak, Flammability and fire resistance of composites reinforced by natural fibers, Polym. Adv. Technol. 19 (2008) 446-453.https://doi.org/10.1002/pat.1135
[61] M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules, 39 (2006) 5194-5205.https://doi.org/10.1021/ma060733p
[62] S.P. da Silva Ribeiro, L. dos Santos Cescon, R.Q.C.R. Ribeiro, A. Landesmann, L.R. de Moura Estevão, R.S.V. Nascimento, Effect of clay minerals structure on the polymer flame retardancy intumescent process, Appl. Clay Sci. 161 (2018) 301-309.https://doi.org/10.1016/j.clay.2018.04.037
[63] C.R.S. de Oliveira, M.A. Batistella, L.A. Lourenço, S.M.d.A.G. Ulson, A.A.U. de Souza, Cotton fabric finishing based on phosphate/clay mineral by direct-coating technique and its influence on the thermal stability of the fibers, Prog. Org. Coat. 150 (2021) 105949.https://doi.org/10.1016/j.porgcoat.2020.105949
[64] C.R.S. de Oliveira, M.A. Batistella, S.M.d.A.G. Ulson, A.A.U. de Souza, Functionalization of cellulosic fibers with a kaolinite-TiO2 nano-hybrid composite via a solvothermal process for flame retardant applications, Carbohydr. Polym. 266 (2021) 118108.https://doi.org/10.1016/j.carbpol.2021.118108
[65] K. Torvinen, F. Pettersson, P. Lahtinen, K. Arstila, V. Kumar, R. Österbacka, M. Toivakka, J.J. Saarinen, Nanoporous kaolin-cellulose nanofibril composites for printed electronics, Flex. Print. Electron. 2 (2017) 024004.https://doi.org/10.1088/2058-8585/aa6d97