Cellulose based Nano-Composites and Applications


Cellulose based Nano-Composites and Applications

Phumlani Tetyana, Nikiwe Mhlanga

Cellulose is an abundant, naturally occurring and bio-degradable material that has been examined as a possible replacement for conventional materials such as plastics which are known to be toxic to the environment. Cellulose nanomaterials, which can be produced directly from cellulose, offer unique properties and structures that have proven useful for a myriad of applications globally. Currently, cellulose nanomaterials have found widespread use in numerous fields including the biomedical, pharmaceutical, packaging, and the food technology industries. Thus, this chapter reports on the properties of cellulose nanomaterials and cellulose nanocomposites and their use in various fields or industries.

Cellulose, Nanomaterials, Nanocrystals, Nanofibers, Morphology

Published online 6/2/2022, 18 pages

Citation: Phumlani Tetyana, Nikiwe Mhlanga, Cellulose based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 236-253, 2022

DOI: https://doi.org/10.21741/9781644901915-10

Part of the book on Advanced Applications of Micro and Nano Clay

[1] K. Dhali, M. Ghasemlou, F. Daver, P. Cass, B. Adhikari, A review of nanocellulose as a new material towards environmental sustainability, Science of the Total Environment 775 (2021) 145871. https://doi.org/10.1016/j.scitotenv.2021.145871
[2] J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies, Biodegradable and compostable alternatives to conventional plastics, Philos Trans R Soc Lond B Biol Sci. 364 (2009) 2127-2139. https://doi.org/10.1098/rstb.2008.0289
[3] A. Kołodziejczyk, Bacterial cellulose: Multipurpose biodegradable robust nanomaterial, In: A. Sand, S. Banga (Eds.), Cellulose Science and Derivatives, IntechOpen, 2021 https://doi.org/10.5772/intechopen.98880
[4] C.L. Reichert, E. Bugnicourt, M-B. Coltelli, P. Cinelli, A. Lazzeri, I. Canesi, F. Braca, B.M. Martínez, R. Alonso, L. Agostinis, S. Verstichel, L. Six, S. De Mets, E.C. Gómez, C. Ißbrücker, R. Geerinck, D.F. Nettleton, I. Campo, E. Sauter, P. Pieczyk, M. Schmid, Bio-based packaging: materials, modifications, industrial applications and sustainability, Polymers, 12 (2020) 1558-1593. https://doi.org/10.3390/polym12071558
[5] S. Rongpipi, D. Ye, E.D. Gomez, E.W. Gomez, Progress and opportunities in the characterization of cellulose – an important regulator of cell wall growth and mechanics, Front. Plant. Sci. 9 (2019) 1894-1922. https://doi.org/10.3389/fpls.2018.01894
[6] R. Zhong, Z.H. Ye, Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation, Plant Cell Physiol. 56 (2015) 195-214. https://doi.org/10.1093/pcp/pcu140
[7] C. Brigham, Biopolymers: Biodegradable Alternatives to Traditional Plastics, in: B. Torok, T. Dransfield (Eds.), Green Chemistry: An Inclusive Approach, Elsevier Inc., New York, 2018, pp. 753-770 https://doi.org/10.1016/B978-0-12-809270-5.00027-3
[8] R. Naomi, R.B.H. Idrus, M.B. Fauzi, Plant- vs. bacterial-derived cellulose for wound healing: a review, Int. J. Environ. Res. Public Health 17 (2020) 6803 https://doi.org/10.3390/ijerph17186803
[9] L.R. Lynd, P.J. Weimer, W.H. van Zyl, I.S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev. 66 (2002) 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
[10] H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L.C. Geonzon, R.G. Bacabac, J. Klein-Nulend, Cellulose and its derivatives: towards biomedical applications, Cellulose 28 (2021) 1893-1931. https://doi.org/10.1007/s10570-020-03674-w
[11] S.P. Gautam, P.S. Bundela, A.K. Pandey, Jamaluddin, M.K. Awasthi, S. Sarsaiya, A review on systematic study of cellulose, J. Appl. & Nat. Sci. 2 (2010) 330-343. https://doi.org/10.31018/jans.v2i2.143
[12] S. Kalia, A. Dufresne, B.M. Cherian, B.S. Kaith, L. Averous, J. Njuguna, E. Nassiopoulos, Cellulose-based bio- and nanocomposites: a review, Int. J. Polym. Sci. 2011 (2011) 1-35 https://doi.org/10.1155/2011/837875
[13] A. Dufresne, Nanocellulose, From nature to high performance tailored materials, Walter de Gruyter GmbH, Berlin/Boston (2012). https://doi.org/10.1515/9783110254600
[14] D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse, M.H. Hussin, Nanocellulose: from fundamentals to advanced applications, Front. Chem. 8 (2020) 392-425. https://doi.org/10.3389/fchem.2020.00392
[15] A. Isogai, Development of completely dispersed cellulose nanofibers, Proc. Jpn. Acad., Ser. B 94 (2018) 161-179. https://doi.org/10.2183/pjab.94.012
[16] Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev, 110 (2010) 3479-3500. https://doi.org/10.1021/cr900339w
[17] J. George, S. Sabapathi, Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl, 8 (2015) 45-54 https://doi.org/10.2147/NSA.S64386
[18] F-W. Bai, S. Yang, and N.W. Ho, Fuel ethanol production from lignocellulosic biomass, In: M. Moo-Young (Ed.), Comprehensive biotechnology, Elsevier, 2019, Pages 49-65. https://doi.org/10.1016/B978-0-444-64046-8.00150-6
[19] C. Brigham, Biopolymers: biodegradable alternatives to traditional plastics, In: B. Torok, T. Dransfield (Eds.), Green Chemistry, Elsevier, 2018, Pages 753-770. https://doi.org/10.1016/B978-0-12-809270-5.00027-3
[20] I.M. Saxena, R. Brown Jr, Biosynthesis of cellulose, In: N. Morohoshi, A. Komamine (Eds.), Progress in Biotechnology, Elsevier, 2001, Pages 69-76. https://doi.org/10.1016/S0921-0423(01)80057-5
[21] D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse, M.H. Hussin, Nanocellulose: from fundamentals to advanced applications. Front. Chem., 8 (2020) 392-425. https://doi.org/10.3389/fchem.2020.00392
[22] P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, G. Guan, Nanocellulose: extraction and application, Carbon Resour. Convers. 1 (2018) 32-43 https://doi.org/10.1016/j.crcon.2018.05.004
[23] K. Zhang, A. Barhoum, C. Xiaoqing, H. Li, P. Samyn, Cellulose nanofibers: fabrication and surface functionalization techniques, in: A. Barhoum, H. Li, P. Samyn (Eds.), Handbook of nanofibers, Psringer Nature, Switzerland, 2019, pp. 409-449. https://doi.org/10.1007/978-3-319-53655-2_58
[24] K.J. Nagarajan, N.R. Ramanujam, M.R. Sanjay, S. Siengchin, B.S. Rajan, K.S. Basha, P. Madhu, G.R. Raghav, A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization, Polym. Compos. 42 (2021) 1588-1630. https://doi.org/10.1002/pc.25929
[25] A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial application of cellulose nano-composites – A review, Biotechnol. Rep. (2018). https://doi.org/10.1016/j.btre.2019.e00316
[26] M.M. Khattab, N.A. Abdel-Hady, Y. Dahman, Cellulose nanocomposites: Opportunities, challenges, and applications, In: M. Jawaid, A.H.P.S. Khalil, S. Boufi (Eds.), Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications, Woodhead Publishing, 2017, Pages 483-516. https://doi.org/10.1016/B978-0-08-100957-4.00021-8
[27] I.P. Mahendra, B. Wirjosentono, Tamrin, H. Ismail, J.A. Mendez, Thermal and morphology properties of cellulose nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB), Open Chem. 17 (2019) 526-536. https://doi.org/10.1515/chem-2019-0063
[28] S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund, T. Peijs, Review: current international research into cellulose nanofibres and nanocomposites, J Mater Sci. 45 (2010) 1-33. https://doi.org/10.1007/s10853-009-3874-0
[29] J.A. Sirviö, M. Lakovaara, A fast dissolution pretreatment to produce strong regenerated cellulose nanofibers via mechanical disintegration, Biomacromolecules. 22 (2021) 3366−3376. https://doi.org/10.1021/acs.biomac.1c00466
[30] S. Jonasson, A. Bunder, T. Niittyla, K. Oksman, Isolation and characterization of cellulose nanofibers from aspen wood using derivatizing and non-derivatizing pretreatments, Cellulose, 27 (2020) 185-203. https://doi.org/10.1007/s10570-019-02754-w
[31] E. Espinosa, F. Rol, J. Bras, A. Rodríguez, Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process, J. Clean. Prod., 239 (2019) 118083-118091. https://doi.org/10.1016/j.jclepro.2019.118083
[32] J. Zeng, Z. Zeng, Z. Cheng, Y. Wang, X. Wang, B. Wang, W. Gao, Cellulose nanofbrils manufactured by various methods with application as paper strength additives, Scientifc Reports 11 (2021) 11918. https://doi.org/10.1038/s41598-021-91420-y
[33] T.C. Mokhena, M.J. John, Cellulose nanomaterials: new generation materials for solving global issues, Cellulose. 27 (2020) 1149-1194. https://doi.org/10.1007/s10570-019-02889-w
[34] H. Zhao, J.H. Kwak, Z.C. Zhang, H.M. Brown, B.W. Arey, J.E. Holladay. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydr. Polym. 2 (2007) 235-241. https://doi.org/10.1016/j.carbpol.2006.12.013
[35] D. Zielinska, K. Szentner, A. Waskiewicz, S. Borysiak, Production of Nanocellulose by Enzymatic Treatment for application in polymer composites, Materials. 14 (2021) 2124-2150. https://doi.org/10.3390/ma14092124
[36] E.C. Ramires, A. Dufresne, Cellulose nanoparticles as reinforcement in polymer nanocomposites, In: F. Gao (Eds.), Advances in polymer nanocomposites. Types and applications, Woodhead Publishing Limited, 2012, pp. 131-163. https://doi.org/10.1533/9780857096241.1.131
[37] J. Rojas, M. Bedoya, Y. Ciro, Current Trends in the Production of Cellulose Nanoparticles and Nanocomposites for Biomedical Applications, In: M. Poletto (Eds.), Intechopen, 2015. https://doi.org/10.5772/61334
[38] R.J. Moon, A. Martin, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941-3994 https://doi.org/10.1039/c0cs00108b
[39] I. Siro, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17 (2010) 459-494. https://doi.org/10.1007/s10570-010-9405-y
[40] M.A. Hubbe, O.J. Rojas, L.A. Lucia, M. Sain, Cellulosic nanocomposites: a review, BioResources. 3(2008) 929-980. https://doi.org/10.15376/biores.3.3.929-980
[41] E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev.35 (2006) 583-592. https://doi.org/10.1039/b502142c
[42] J. Blessy, V.K. Sagarika, S. Chinnu, K. Nandakumar, T. Sabu, Cellulose nanocomposites: Fabrication and biomedical applications, Journal of Bioresources and Bioproducts 5 (2020) 223-237. https://doi.org/10.1016/j.jobab.2020.10.001
[43] V. Favier, G.R. Canova, J.Y. Cavaillé, H. Chanzy, A. Dufresne, C. Gauthier, Nanocomposite materials from latex and cellulose whiskers, Polymers for Advanced Technologies. 6 (1995) 351-355 https://doi.org/10.1002/pat.1995.220060514
[44] K-Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman, A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Composite Science and Technology. 105 (2014) 15-27. https://doi.org/10.1016/j.compscitech.2014.08.032
[45] D. Feldman, Cellulose Nanocomposites, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 52 (2015) 322-329. https://doi.org/10.1080/10601325.2015.1007279
[46] N.E. Mahbub, E. Gemechu, H. Zhang, A. Kumar, The life cycle greenhouse gas emission benefits from alternative uses of biofuel co-products, Sustain. Energy Technol. Assess., 34 (2019) 173-186. https://doi.org/10.1016/j.seta.2019.05.001
[47] P.K. Gupta, S.S. Raghunath, D.V. Prasanna, P. Venkat, V. Shree, C. Chithananthan, S. Choudhary, K. Surender, K. Geetha, An update on overview of cellulose, its structure, and applications, In: A.R. Pascual, M.E.E. Martin (Eds.), Cellulose, Intechopen, 2019, Pages 846-1297.
[48] L. Li, Y. Ge, M. Xiao, Towards biofuel generation III+: A sustainable industrial symbiosis design of co-producing algal and cellulosic biofuels, J. Clean. Prod., 306 (2021) 127144-12758. https://doi.org/10.1016/j.jclepro.2021.127144
[49] B.P. Sharma, T.E. Yu, B.C. English, C.N. Boyer, J.A. Larson, Impact of government subsidies on a cellulosic biofuel sector with diverse risk preferences toward feedstock uncertainty, Energy Policy, 146 (2020) 111737-111747. https://doi.org/10.1016/j.enpol.2020.111737
[50] W. Liu, H. Du, M. Zhang, K. Liu, H. Liu, H. Xie, X. Zhang, C. Si, Bacterial cellulose-based composite scaffolds for biomedical applications: a review, ACS Sustain. Chem. Eng., 8 (2020) 7536-7562. https://doi.org/10.1021/acssuschemeng.0c00125
[51] R. Mu, X. Hong, Y. Ni, Y. Li, J. Pang, Q. Wang, J. Xiao, Y. Zheng, Recent trends and applications of cellulose nanocrystals in food industry, Trends Food Sci Technol., 93 (2019) 136-144. https://doi.org/10.1016/j.tifs.2019.09.013
[52] Z. Li, J. Wang, Y. Xu, M. Shen, C. Duan, L. Dai, Y. Ni, Green and sustainable cellulose-derived humidity sensors: A review, Carbohydr. Polym., (2021) 118385. https://doi.org/10.1016/j.carbpol.2021.118385
[53] C. Sun, D. Zhu, H. Jia, K. Lei, Z. Zheng, X. Wang, Humidity and heat dual response cellulose nanocrystals/poly (N-isopropylacrylamide) composite films with cyclic performance, ACS Appl. Mater. Interfaces, 11 (2019) 39192-39200. https://doi.org/10.1021/acsami.9b14201
[54] Y. Wang, S. Hou, T. Li, S. Jin, Y. Shao, H. Yang, D. Wu, S. Dai, Y. Lu, S. Chen, Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers, ACS Appl. Mater. Interfaces, 12 (2020) 41896-41904. https://doi.org/10.1021/acsami.0c12868
[55] J.W. Han, B. Kim, J. Li, M. Meyyappan, Carbon nanotube-based humidity sensor on cellulose paper, J. Phys. Chem. C., 116 (2012) 22094-22097. https://doi.org/10.1021/jp3080223
[56] V. Ducéré, A. Bernès, C. Lacabanne, A capacitive humidity sensor using cross-linked cellulose acetate butyrate, Sens. Actuators B Chem, 106 (2005) 331-334. https://doi.org/10.1016/j.snb.2004.08.028
[57] P. Kumar, A. Ghosh, D.A. Jose, A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: applications in rewritable paper and fingerprint imaging, Analyst, 144 (2019) 594-601. https://doi.org/10.1039/C8AN01042K
[58] L. Dai, Y. Wang, X. Zou, Z. Chen, H. Liu, Y. Ni, Ultrasensitive physical, Bio, and chemical sensors derived from 1‐, 2‐, and 3‐D nanocellulosic materials, Small, 16 (2020) 1906567. https://doi.org/10.1002/smll.201906567
[59] M. Wang, X. Tian, R.H. Ras, O. Ikkala, Sensitive Humidity‐Driven Reversible and Bidirectional Bending of Nanocellulose Thin Films as Bio‐Inspired Actuation, Adv. Mater. Interfaces, 2 (2015) 1500080-1500087. https://doi.org/10.1002/admi.201500080
[60] C.Y. Hsieh, C.D. Liao, W.C. Wang, Evanescent wave sensor using cellulose nanocrystals composite fiber coating for humidity measurement, Proc. SPIE, 11233 (2020) 1123302. https://doi.org/10.1117/12.2545580
[61] G.F.V.A. Eyebe, B. Bideau, É. Loranger, F. Domingue, TEMPO-oxidized cellulose nanofibre (TOCN) films and composites with PVOH as sensitive dielectrics for microwave humidity sensing, Sens. Actuators B Chem., 291 (2019) 385-393. https://doi.org/10.1016/j.snb.2019.04.070