Polymers in Guided Bone Regeneration


Polymers in Guided Bone Regeneration

Rafaella Moreno Barros, Demis Ferreira de Melo, Bruna Galdorfini Chiari-Andréo, João Augusto Oshiro-Júnior

In dental debilitating conditions, such as edentulism, the patient must have sufficient alveolar crest bone mass to guarantee the possibility of corrective interventions, such as implants. The decrease in bone tissue is caused by the body’s natural reabsorption, which begins after tooth loss. Some surgical techniques could be used to solve this problem, such as guided bone regeneration. In this technique, a membrane developed with biomaterials is used, which aims to act as physical barrier to prevent the appearance of soft tissue and maintain the bone defect space, ensuring maximum regeneration. This membrane must be biocompatible, have specific rigidity to maintain the space, prevent the migration of epithelial cells and ensure the resorption time after bone tissue regeneration. This chapter will address the polymeric materials most used in the development of membranes for guided bone regeneration process, addressing their physicochemical characteristics, advantages, disadvantages, among other important aspects.

Bone Tissue, Regeneration, Biocompatible Membrane, Implants, Edentulism

Published online 4/20/2022, 21 pages

Citation: Rafaella Moreno Barros, Demis Ferreira de Melo, Bruna Galdorfini Chiari-Andréo, João Augusto Oshiro-Júnior, Polymers in Guided Bone Regeneration, Materials Research Foundations, Vol. 123, pp 195-215, 2022

DOI: https://doi.org/10.21741/9781644901892-8

Part of the book on Applications of Polymers in Surgery

[1] A. Gupta, D.A. Felton, T. Jemt, S. Koka, Rehabilitation of edentulism and mortality: A Systematic review, J. Prosthodont. 28 (2019) 526-535. https://doi.org/10.1111/jopr.12792
[2] S. Chowdhury, P.P. Chakraborty, Universal health coverage ‑ There is more to it than meets the eye, J. Fam. Med. Prim. Care. 6 (2017) 169-170. https://doi.org/10.4103/jfmpc.jfmpc_13_17
[3] M. Cardoso, I. Balducci, D.M. Telles, E.J.V. Lourenço, L. Nogueira-Júnior, Edentulismo no Brasil: Tendências, projeções e expectativas até 2040, Cienc. e Saude Coletiva. 21 (2016) 1239-1246. https://doi.org/10.1590/1413-81232015214.13672015
[4] M. Khan, J. Ullah, H. Qazi, Frenquency of common factors responsible for non-treatment of partial edentulism, Pakistan Oral Dent. J. 38 (2018) 9-13.
[5] M. Gul, M. Yucesan, F. Serin, E. Celik, A simulation model to improve production processes in an implant manufacturing plant, 21st Int. Res. Conf. “Trends Dev. Mach. Assoc. Technol. (2018) 177-180.
[6] Z. Özkurt-Kayahan, C. Özçakır-Tomruk, E. Kazazoğlu, Partial edentulism and treatment options, Yeditepe Dent. J. 13 (2017) 31-36. https://doi.org/10.5505/yeditepe.2017.62207
[7] K.V.N. Avinash, R. Sampathkumar, V. Raghu, C. Reddy, S. Munireddy, J. Shetty, Implants in narrow ridge situations: A piezo-surgical approach for alveolar ridge split, Int. J. Appl. Dent. Sci. 5 (2019) 244-248.
[8] J.A. Oshiro, M.R. Sato, C.R. Scardueli, G.J.P.L. de Oliveira, M.P. Abucafy, M. Chorilli, Bioactive molecule-loaded drug delivery systems to optimize bone tissue repair, Curr. Protein Pept. Sci. 18 (2017) 1-14. https://doi.org/10.2174/1389203718666170328111605
[9] Y. Zhang, X. Zhang, B. Shi, R. Miron, Membranes for guided tissue and bone regeneration, Ann. Oral Maxillofac. Surg. 1 (2013) 1-10. https://doi.org/10.13172/2052-7837-1-1-451
[10] Y.K. Kim, J.K. Ku, Guided bone regeneration, J. Korean Assoc. Oral Maxillofac. Surg. 46 (2020) 361-366. https://doi.org/10.5125/jkaoms.2020.46.5.361
[11] M. Toledano, J.L. Gutierrez-Pérez, A. Gutierrez-Corrales, M.A. Serrera-Figallo, M. Toledano-Osorio, J.I. Rosales-Leal, M. Aguilar, R. Osorio, D. Torres-Lagares, Novel non-resorbable polymeric-nanostructured scaffolds for guided bone regeneration, Clin. Oral Investig. 24 (2020) 2037-2049. https://doi.org/10.1007/s00784-019-03068-8
[12] S.W. Lee, S.G. Kim, Membranes for the Guided Bone Regeneration, Maxillofac. Plast. Reconstr. Surg. 36 (2014) 239-246. https://doi.org/10.14402/jkamprs.2014.36.6.239
[13] G. Nechifor, E.E. Totu, A.C. Nechifor, I. Isildak, O. Oprea, C.M. Cristache, Non-resorbable nanocomposite membranes for guided bone regeneration based on polysulfone-quartz fiber grafted with nano-TiO2, Nanomaterials. 9 (2019) 1-22. https://doi.org/10.3390/nano9070985
[14] J.Y. Park, J.H. Lee, C.H. Kim, Y.J. Kim, Fabrication of polytetrafluoroethylene nanofibrous membranes for guided bone regeneration, RSC Adv. 8 (2018) 34359-34369. https://doi.org/10.1039/C8RA05637D
[15] L.W. McKeen, Plastics Used in Medical Devices, in: Handb. Polym. Appl. Med. Med. Devices, 2014: p21-53. https://doi.org/10.1016/B978-0-323-22805-3.00003-7
[16] L.W. McKeen, Fluoropolymers, in: Film Prop. Plast. Elastomers, 2012: pp. 255-313. https://doi.org/10.1016/B978-1-4557-2551-9.00011-6
[17] C. Dahlin, A. Linde, J. Gottlow, S. Nyman, Healing of bone defects by guided tissue regeneration, Plast. Reconstr. Surg. 81 (1988) 672-676. https://doi.org/10.1097/00006534-198805000-00004
[18] Y.D. Rakhmatia, Y. Ayukawa, A. Furuhashi, K. Koyano, Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications, J. Prosthodont. Res. 57 (2013) 3-14. https://doi.org/10.1016/j.jpor.2012.12.001
[19] A. Ranjbarzadeh-Dibazar, J. Barzin, P. Shokrollahi, Microstructure crystalline domains disorder critically controls formation of nano-porous/long fibrillar morphology of ePTFE membranes, Polymer (Guildf). 121 (2017) 75-87. https://doi.org/10.1016/j.polymer.2017.06.003
[20] M. Trobos, A. Juhlin, F.A. Shah, M. Hoffman, H. Sahlin, C. Dahlin, In vitro evaluation of barrier function against oral bacteria of dense and expanded polytetrafluoroethylene (PTFE) membranes for guided bone regeneration, Clin. Implant Dent. Relat. Res. 20 (2018) 738-748. https://doi.org/10.1111/cid.12629
[21] R. Dimitriou, G.I. Mataliotakis, G.M. Calori, P. V. Giannoudis, The role of barrier membranes for guided bone regeneration and restoration of large bone defects: Current experimental and clinical evidence, BMC Med. 10 (2012). https://doi.org/10.1186/1741-7015-10-81
[22] J.M. Carbonell, I.S. Martín, A. Santos, A. Pujol, J.D. Sanz-Moliner, J. Nart, High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: A literature review, Int. J. Oral Maxillofac. Surg. 43 (2014) 75-84. https://doi.org/10.1016/j.ijom.2013.05.017
[23] A. Cucchi, E. Vignudelli, A. Napolitano, C. Marchetti, G. Corinaldesi, Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial, Clin. Implant Dent. Relat. Res. 19 (2017) 821-832. https://doi.org/10.1111/cid.12520
[24] J.I. Sasaki, G.L. Abe, A. Li, P. Thongthai, R. Tsuboi, T. Kohno, S. Imazato, Barrier membranes for tissue regeneration in dentistry, Biomater. Investig. Dent. 8 (2021) 54-63. https://doi.org/10.1080/26415275.2021.1925556
[25] I.A. Urban, M.H.A. Saleh, A. Ravidà, A. Forster, H.L. Wang, Z. Barath, Vertical bone augmentation utilizing a titanium-reinforced PTFE mesh: A multi-variate analysis of influencing factors, Clin. Oral Implants Res. (2021) 1-12. https://doi.org/10.1111/clr.13755
[26] A. Cucchi, P. Ghensi, Vertical Guided Bone Regeneration using Titanium-reinforced d-PTFE Membrane and prehydrated corticocancellous Bone Graft, Open Dent. J. 8 (2014) 194-200. https://doi.org/10.2174/1874210601408010194
[27] P. Windisch, K. Orban, G.E. Salvi, A. Sculean, B. Molnar, Vertical-guided bone regeneration with a titanium-reinforced d-PTFE membrane utilizing a novel split-thickness flap design: a prospective case series, Clin. Oral Investig. 25 (2021) 2969-2980. https://doi.org/10.1007/s00784-020-03617-6
[28] L. Zoran, B. Marija, M. Radomir, M. Stevo, M. Marko, D. Igor, Comparison of resorbable membranes for guided bone regeneration of human and bovine origin, Acta Vet. Brno. 64 (2014) 477-492. https://doi.org/10.2478/acve-2014-0045
[29] N.K. Soldatos, P. Stylianou, P. Koidou, N. Angelov, R. Yukna, G.E. Romanos, Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration, Quintessence Int. (Hanover Park. IL). 48 (2017) 131-147.
[30] L.P. Mau, C.W. Cheng, P.Y. Hsieh, A.A. Jones, Biological complication in guided bone regeneration with a polylactic acid membrane: A case report, Implant Dent. 21 (2012) 171-174. https://doi.org/10.1097/ID.0b013e31824eece1
[31] C. Fidalgo, M.A. Rodrigues, T. Peixoto, J. V. Lobato, J.D. Santos, M.A. Lopes, Development of asymmetric resorbable membranes for guided bone and surrounding tissue regeneration, J. Biomed. Mater. Res. Part A. 106 (2018) 2141-2150. https://doi.org/10.1002/jbm.a.36420
[32] P. Aprile, D. Letourneur, T. Simon-Yarza, Membranes for guided bone regeneration: A Road from bench to bedside, Adv. Healthc. Mater. 9 (2020) 2000707. https://doi.org/10.1002/adhm.202000707
[33] E.K. Efthimiadou, M. Theodosiou, G. Toniolo, N.Y. Abu-Thabit, Stimuli-responsive biopolymer nanocarriers for drug delivery applications, in: Stimuli Responsive Polym. Nanocarriers Drug Deliv. Appl., 2018: pp. 405-432. https://doi.org/10.1016/B978-0-08-101997-9.00019-9
[34] H. Zhang, Q. Zhang, Q. Cai, Q. Luo, X. Li, X. Li, In-reactor engineering of bioactive aliphatic polyesters via magnesium-catalyzed polycondensation for guided tissue regeneration, Chem. Eng. J. 424 (2021) 130432. https://doi.org/10.1016/j.cej.2021.130432
[35] S.J. Huang, Biodegradation, in: Compr. Polym. Sci. Suppl., 1989: pp. 597-606. https://doi.org/10.1016/B978-0-08-096701-1.00201-9
[36] Y. Qin, A brief description of textile fibers, in: Med. Text. Mater., 2016: pp. 23-42. https://doi.org/10.1016/B978-0-08-100618-4.00003-0
[37] L.M. Caballero, S.M. Silva, S.E. Moulton, Growth factor delivery: Defining the next generation platforms for tissue engineering, J. Control. Release. 306 (2019) 40-58. https://doi.org/10.1016/j.jconrel.2019.05.028
[38] M. Chi, M. Qi, A. Lan, P. Wang, M.D. Weir, M.A. Melo, X. Sun, B. Dong, C. Li, J. Wu, L. Wang, H.H.K. Xu, Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms, Int. J. Mol. Sci. 20 (2019) 278. https://doi.org/10.3390/ijms20020278
[39] A. Zamboulis, E.A. Nakiou, E. Christodoulou, D.N. Bikiaris, Polyglycerol hyperbranched polyesters: Synthesis, properties and pharmaceutical and biomedical applications, Int. J. Mol. Sci. 20 (2019) 278. https://doi.org/10.3390/ijms20246210
[40] P. Gentile, V. Chiono, C. Tonda-turo, A.M. Ferreira, G. Ciardelli, Polymeric membranes for guided bone regeneration, Biotechnol. J. 6 (2011) 1187-1197. https://doi.org/10.1002/biot.201100294
[41] T. Casalini, F. Rossi, A. Castrovinci, G. Perale, A Perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications, Front. Bioeng. Biotechnol. 7 (2019) 1-16. https://doi.org/10.3389/fbioe.2019.00001
[42] K. Asano, T. Matsuno, Y. Tabata, T. Satoh, Preparation of thermoplastic poly(L-lactic acid) membranes for guided bone regeneration.pdf, Int. J. Oral Maxillofac. Implants. 28 (2013) 973-981. https://doi.org/10.11607/jomi.2729
[43] J. Wang, L. Wang, Z. Zhou, H. Lai, P. Xu, L. Liao, J. Wei, Biodegradable polymer membranes applied in guided bone / tissue regeneration: A review, Polymers (Basel). 8 (2016) 115. https://doi.org/10.3390/polym8040115
[44] D. Kim, T. Kang, D. Gober, C. Orlich, A Liquid membrane as a barrier membrane for guided bone regeneration, ISRN Dent. 2011 (2011) 468282. https://doi.org/10.5402/2011/468282
[45] D. Schneider, F.E. Weber, C. Andreoni, R.E. Jung, D. Schneider, A randomized controlled clinical multicenter trial comparing the clinical and histological performance of a new, modified polylactide-co-glycolide acid membrane to an expanded polytetrafluorethylene membrane in guided bone regeneration procedures, Clin. Oral Implants Res. 25 (2013) 150-158. https://doi.org/10.1111/clr.12132
[46] D. Gorth, T.J. Webster, Matrices for tissue engineering and regenerative medicine, in: Biomater. Artif. Organs, 2011: pp. 270-286. https://doi.org/10.1533/9780857090843.2.270
[47] O.S. Manoukian, N. Sardashti, C. Health, U. States, Biomaterials for tissue engineering and regenerative medicine, in: Encycl. Biomed. Eng., 2019: pp. 462-482. https://doi.org/10.1016/B978-0-12-801238-3.64098-9
[48] E.M. Prieto, S.A. Guelcher, Tailoring properties of polymeric biomedical foams, in: Biomed. Foam. Tissue Eng. Appl., 2014: pp. 129-162. https://doi.org/10.1533/9780857097033.1.129
[49] Y.D. Rakhmatia, Y. Ayujawa, A. Furuhashi, K. Koyano, Current barrier membranes : Titanium mesh and other membranes for guided bone regeneration in dental applications, J. Prosthodont. Res. 57 (2013) 3-14. https://doi.org/10.1016/j.jpor.2012.12.001
[50] E. Milella, P.A. Ramires, E. Brescia, G. La Sala, L. Di Paola, V. Bruno, B. Unit, S.S. Appia, Physicochemical, mechanical, and biological properties of commercial membranes for GTR, J. Biomed. Mater. Res. 58 (2001) 427-435. https://doi.org/10.1002/jbm.1038
[51] A. Wadhawan, T. Gowda, D. Mehta, Gore-tex® versus resolut adapt® GTR membranes with perioglas® in periodontal regeneration, Contemp. Clin. Dent. 3 (2012) 406. https://doi.org/10.4103/0976-237X.107427
[52] I. Elgali, O. Omar, C. Dahlin, P. Thomsen, Guided bone regeneration: materials and biological mechanisms revisited, Eur. J. Oral Sci. 125 (2017) 315-337. https://doi.org/10.1111/eos.12364
[53] P.F.M. Gielkens, J. Schortinghuis, J.R. De Jong, G.M. Raghoebar, B. Stegenga, R.R.M. Bos, Vivosorb®, Bio-Gide®, and Gore-Tex ® as barrier membranes in rat mandibular defects: An evaluation by microradiography and micro-CT, Clin. Oral Implants Res. 19 (2008) 516-521. https://doi.org/10.1111/j.1600-0501.2007.01511.x
[54] M. Ghasemlou, F. Daver, E.P. Ivanova, B. Adhikari, Polyurethanes from seed oil-based polyols: A review of synthesis, mechanical and thermal properties, Ind. Crops Prod. 142 (2019) 111841. https://doi.org/10.1016/j.indcrop.2019.111841
[55] M.A. Sawpan, Polyurethanes from vegetable oils and applications: a review, J. Polym. Res. 25 (2018) 1-15. https://doi.org/10.1007/s10965-017-1408-z
[56] T.P.T. De Sousa, M.S.T. Da Costa, R. Guilherme, W. Orcini, L. de A. Holgado, E.M. Varize Silveira, O. Tavano, A.G. Magdalena, S.A. Catanzaro-Guimarães, A. Kinoshita, Polyurethane derived from Ricinus Communis as graft for bone defect treatments, Polimeros. 28 (2018) 246-255. https://doi.org/10.1590/0104-1428.03617
[57] M.B. Lowinger, S.E. Barrett, F. Zhang, R.O. Williams, Sustained release drug delivery applications of polyurethanes, Pharmaceutics. 10 (2018) 1-19. https://doi.org/10.3390/pharmaceutics10020055
[58] T. Pivec, M. Sfiligoj-Smole, P. Gašparič, K.S. Kleinschek, Polyurethanes for medical use, Tekstilec. 60 (2017) 182-197. https://doi.org/10.14502/Tekstilec2017.60.182-197
[59] C. Zhang, J. Wang, Y. Xie, L. Wang, L. Yang, J. Yu, A. Miyamoto, F. Sun, Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration, Regen. Biomater. 8 (2021) 1-9. https://doi.org/10.1093/rb/rbaa046
[60] S.M. Giannitelli, F. Basoli, P. Mozetic, P. Piva, F.N. Bartuli, F. Luciani, C. Arcuri, M. Trombetta, A. Rainer, S. Licoccia, Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration, Mater. Sci. Eng. C. 51 (2015) 329-335. https://doi.org/10.1016/j.msec.2015.03.002
[61] G.S. Andrade, D. de B. Andrade, G.G. de Lima, F.F. Padilha, P.A.L. Lima, Prospecção tecnológica de quitosana, fibroína e goma xantana como biomateriais aplicáveis em scaffolds-3d technological forecasting of chitosan, silk fibroin and xanthan gum as biomaterials for scaffolds-3d, GEINTEC. 10 (2020) 5279-5288. https://doi.org/10.7198/geintec.v10i1.1173
[62] M.J.L. Dantas, T.B. Fidéles, R.G. Carrodeguas, M.V.L. Fook, Obtenção e caracterização de esferas de quitosana / hidroxiapatita gerada in situ, Rev. Eletrônica Mater. e Process. 11 (2016) 18-24.
[63] R.A.I. Reshad, T.A. Jishan, N.N. Chowdhury, Chitosan and its broad applications: A brief review, SSRN. 4 (2021) 1-55. https://doi.org/10.2139/ssrn.3842055
[64] B. Tian, Y. Liu, Chitosan-based biomaterials: From discovery to food application, Polym. Adv. Technol. 31 (2020) 2408-2421. https://doi.org/10.1002/pat.5010
[65] T.M.S. Arnaud, T.C.M. Stamford, T.L.M. Stamford, N.P. Stamford, Produção, propriedades e aplicações da quitosana na agricultura e em alimentos, Biotecnol. Apl. à Agro&Indústria. 4 (2017) 503-528. https://doi.org/10.5151/9788521211150-14
[66] E.P. Pinto, W.D.S. Tavares, R.S. Matos, A.M. Ferreira, R.P. Menezes, M.E.H.M. Da Costa, T.M. De Souza, I.M. Ferreira, F.F.O. De Sousa, R.R.M. Zamora, Influence of low and high glycerol concentrations on wettability and flexibility of chitosan biofilms, Quim. Nova. 41 (2018) 1109-1116. https://doi.org/10.21577/0100-4042.20170287
[67] A. Aguilar, N. Zein, E. Harmouch, B. Hafdi, F. Bornert, O. Damien, F. Clauss, F. Fioretti, O. Huck, N. Benkirane-jessel, G. Hua, Biodental Engineering V, Biodental Eng. V. (2019) 1-17.
[68] V.P. Murali, F.D. Guerra, N. Ghadri, J.M. Christian, S.H. Stein, J.A. Jennings, R.A. Smith, J.D. Bumgardner, Simvastatin loaded chitosan guided bone regeneration membranes stimulate bone healing, J. Periodontal Res. (2021) 1-8. https://doi.org/10.1111/jre.12883
[69] H. Su, T. Fujiwara, K.M. Anderson, A. Karydis, M.N. Ghadri, J.D. Bumgardner, A comparison of two types of electrospun chitosan membranes and a collagen membrane in vivo, Dent. Mater. 37 (2021) 60-70. https://doi.org/10.1016/j.dental.2020.10.011
[70] R. Ikono, N. Li, N.H. Pratama, A. Vibriani, D.R. Yuniarni, M. Luthfansyah, B.M. Bachtiar, E.W. Bachtiar, K. Mulia, M. Nasikin, H. Kagami, X. Li, E. Mardliyati, N.T. Rochman, T. Nagamura-Inoue, A. Tojo, Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles, Biotechnol. Reports. 24 (2019). https://doi.org/10.1016/j.btre.2019.e00350
[71] A.K. Mahanta, D.K. Patel, P. Maiti, Nanohybrid scaffold of chitosan and functionalized graphene oxide for controlled drug delivery and bone regeneration, ACS Biomater. Sci. Eng. 5 (2019) 5139-5149. https://doi.org/10.1021/acsbiomaterials.9b00829
[72] J.A. Oshiro Junior, L.M. Shiota, L.A. Chiavacci, Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas, Rev. Mater. 19 (2014) 24-32. https://doi.org/10.1590/S1517-70762014000100005
[73] J.F. Mendes, J. Augusto, O. Junior, C. Garcia, L.A. Chiavacci, Synthesis of ureasil-polyether film forming materials by using environmentally friendly solvent, (2021) 1-10. https://doi.org/10.4322/2179-443X.0730
[74] J.M. García-Martínez, E.P. Collar, Organic-Inorganic Hybrid Materials by ALD, Polymers (Basel). 13 (2020) 4. https://doi.org/10.3390/polym13010086
[75] B. Samiey, C.H. Cheng, J. Wu, Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A review, Materials (Basel). 7 (2014) 673-726. https://doi.org/10.3390/ma7020673
[76] J.A. Oshiro Junior, G.R. Mortari, R.M. de Freitas, E. Marcantonio-Junior, L. Lopes, L.C. Spolidorio, R.A. Marcantonio, L.A. Chiavacci, Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology, Int. J. Polym. Mater. Polym. Biomater. 65 (2016) 647-652. https://doi.org/10.1080/00914037.2016.1157796
[77] J.A. Oshiro Junior, A. Lusuardi, L.A. Chiavacci, M.T. Cuberes, Nanostructural arrangements and surface morphology on ureasil-polyether films loaded with dexamethasone acetate, Nanomaterials. 11 (2021) 1-19. https://doi.org/10.3390/nano11061362
[78] K.M.N. Costa, M.R. Sato, T.L.A. Barbosa, M.G.F. Rodrigues, A.C.D. Medeiros, B.P.G.L. Damasceno, J.A. Oshiro-Junior, Curcumin-loaded micelles dispersed in ureasil-polyether materials for a novel sustained-release formulation, Pharmaceutics. 13 (2021) 1-10. https://doi.org/10.3390/pharmaceutics13050675
[79] J.A. Oshiro Junior, N.J. Nasser, B.G. Chiari-Andréo, M.T. Cuberes, L.A. Chiavacci, Study of triamcinolone release and mucoadhesive properties of macroporous hybrid films for oral disease treatment, Biomedical Physics & Engineering Express. 4 (2018) 1-9. https://doi.org/10.1088/2057-1976/aaa84b
[80] J.A. Oshiro Junior, C.R. Scardueli, G.P.L. de Oliveira, R.A.C. Marcantonio, L.A. Chiavacci, Development of ureasil-polyether membranes for guided bone regeneration, Biomedical Physics & Engineering Express. 3 (2017) 1-10. https://doi.org/10.1088/2057-1976/aa56a6
[81] M.M. Sanagi, N.T. Ng, F.M. Marsin, M.R. Zinalibdin, Z.A. Sutirman, A.S.A. Keyon, W.A.W. Ibrahim, Facile organic-inorganic hybrid sorbents for extraction of pollutants from aqueous samples – A review, Malaysian J. Anal. Sci. 23 (2019) 561-571.
[82] J.A. Oshiro-Junior, M.P. Abuçafy, E.B. Manaia, B.L da Silva, B.G. Chiari-Andréo, L.A. Chiavacci, Drug delivery systems obtained from silica based organic-inorganic hybrids, Polymers. 8 (2016) 1-14. https://doi.org/10.3390/polym8040091
[83] J.A. Oshiro-Junior, R.M. Barros, C.G. da Silva, C.C. de Souza, C.R. Scardueli, C.C. Marcantonio, P.R. da Silva Saches, L. Mendes, E.M. Cilli, R.A.C. Marcantonio, L.A. Chiavacci, In vivo effectiveness of hybrid membranes with osteogenic growth peptide for bone regeneration, J. Tissue Eng. Regen. Med. (2021) 1-10. https://doi.org/10.1002/term.3226
[84] Q. Yuan, L. Li, Y. Peng, A. Zhuang, W. Wei, D. Zhang, Y. Pang, X. Bi, Biomimetic nanofibrous hybrid hydrogel membranes with sustained growth factor release for guided bone regeneration, Biomater. Sci. 9 (2021) 1256-1271. https://doi.org/10.1039/D0BM01821J