Applications of Polymers in Neurosurgery


Applications of Polymers in Neurosurgery

Zarsha Naureen, Muhammad Zubair, Fiaz Rasul, Habibullah Nadeem, Muhammad Hussnain Siddique, Muhammad Afzal and Ijaz Rasul

The advancement in regenerative medicine has made it possible to offer new strategies and novel materials that have brought a revolution in the areas of drug delivery, tissue engineering, and cosmetic surgeries. The area of tissue engineering has mainly focused to develop such materials that can mimic the natural extracellular matrix (ECM). The material used widely for this purpose as well as for scaffolds for temporary support is known as a polymer. Polymers both natural and synthetic are being used as biomaterial and it has brought about significant changes in the area of neuronal repair. This chapter discusses the potential areas in neurosurgery where the application of polymers is possible.

Polymers, Neurosurgery, Peripheral Nerve Injury, Spinal Injury, Dural Repair

Published online 4/20/2022, 31 pages

Citation: Zarsha Naureen, Muhammad Zubair, Fiaz Rasul, Habibullah Nadeem, Muhammad Hussnain Siddique, Muhammad Afzal and Ijaz Rasul, Applications of Polymers in Neurosurgery, Materials Research Foundations, Vol. 123, pp 92-122, 2022


Part of the book on Applications of Polymers in Surgery

[1] D. Ozdil, H.M. Aydin, Polymers for medical and tissue engineering applications, Journal of Chemical Technology & Biotechnology. 89 (2014) 1793-1810.
[2] X. Liu, J.M. Holzwarth, P.X. Ma, Functionalized synthetic biodegradable polymer scaffolds for tissue engineering, Macromol Biosci. 12 (2012) 911-919.
[3] Z.Z. Khaing, R.C. Thomas, S.A. Geissler, C.E. Schmidt, Advanced biomaterials for repairing the nervous system: what can hydrogels do for the brain?, Materials Today. 17 (2014) 332-340.
[4] J. Carmen, T. Magnus, R. Cassiani-Ingoni, L. Sherman, M.S. Rao, M.P. Mattson, Revisiting the astrocyte-oligodendrocyte relationship in the adult CNS, Progress in Neurobiology. 82 (2007) 151-162.
[5] H. Zhang, K. Uchimura, K. Kadomatsu, Brain Keratan Sulfate and Glial Scar Formation, Annals of the New York Academy of Sciences. 1086 (2006) 81-90.
[6] R.G. Ellis-Behnke, L.A. Teather, G.E. Schneider, K.F. So, Using Nanotechnology to Design Potential Therapies for CNS Regeneration, Current Pharmaceutical Design. 13 (2007) 2519-2528.
[7] M. Tsintou, C. Wang, K. Dalamagkas, D. Weng, Y.-N. Zhang, W. Niu, 5 – Nanogels for biomedical applications: Drug delivery, imaging, tissue engineering, and biosensors, in: M. Razavi, A. Thakor (Eds.), Nanobiomaterials Science, Development and Evaluation, Woodhead Publishing, 2017: pp. 87-124.
[8] A. Fraczek-Szczypta, Carbon nanomaterials for nerve tissue stimulation and regeneration, Materials Science and Engineering: C. 34 (2014) 35-49.
[9] S. Verma, A.J. Domb, N. Kumar, Nanomaterials for regenerative medicine, Nanomedicine (Lond). 6 (2011) 157-181.
[10] O.S. Manoukian, J.T. Baker, S. Rudraiah, M.R. Arul, A.T. Vella, A.J. Domb, S.G. Kumbar, Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration, Journal of Controlled Release. 317 (2020) 78-95.
[11] J. Noble, C.A. Munro, V.S. Prasad, R. Midha, Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries, J Trauma. 45 (1998) 116-122.
[12] S. Yegiyants, D. Dayicioglu, G. Kardashian, Z.J. Panthaki, Traumatic peripheral nerve injury: a wartime review, J Craniofac Surg. 21 (2010) 998-1001.
[13] S.E. Mackinnon, A.R. Hudson, R.E. Falk, D. Kline, D. Hunter, Peripheral nerve allograft: an assessment of regeneration across pretreated nerve allografts, Neurosurgery. 15 (1984) 690-693.
[14] P.J. Apel, J. Ma, M. Callahan, C.N. Northam, T.B. Alton, W.E. Sonntag, Z. Li, Effect of locally delivered IGF-1 on nerve regeneration during aging: an experimental study in rats, Muscle Nerve. 41 (2010) 335-341.
[15] P. Sierpinski, J. Garrett, J. Ma, P. Apel, D. Klorig, T. Smith, L.A. Koman, A. Atala, M. Van Dyke, The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves, Biomaterials. 29 (2008) 118-128.
[16] S. Song, X. Wang, T. Wang, Q. Yu, Z. Hou, Z. Zhu, R. Li, Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves, Front. Bioeng. Biotechnol. 8 (2020).
[17] R. Deumens, A. Bozkurt, M.F. Meek, M.A.E. Marcus, E.A.J. Joosten, J. Weis, G.A. Brook, Repairing injured peripheral nerves: Bridging the gap, Prog Neurobiol. 92 (2010) 245-276.
[18] X. Zhang, W. Qu, D. Li, K. Shi, R. Li, Y. Han, E. Jin, J. Ding, X. Chen, Functional Polymer-Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration, Advanced Materials Interfaces. 7 (2020) 2000225.
[19] K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog Polym Sci. 37 (2012) 106-126.
[20] B.N. Johnson, K.Z. Lancaster, G. Zhen, J. He, M.K. Gupta, Y.L. Kong, E.A. Engel, K.D. Krick, A. Ju, F. Meng, L.W. Enquist, X. Jia, M.C. McAlpine, 3D Printed Anatomical Nerve Regeneration Pathways, Adv Funct Mater. 25 (2015) 6205-6217.
[21] S. Suri, L.-H. Han, W. Zhang, A. Singh, S. Chen, C.E. Schmidt, Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering, Biomed Microdevices. 13 (2011) 983-993.
[22] B. Weng, X. Liu, R. Shepherd, G.G. Wallace, Inkjet printed polypyrrole/collagen scaffold: A combination of spatial control and electrical stimulation of PC12 cells, Synthetic Metals. 162 (2012) 1375-1380.
[23] S.H. Kim, Y.K. Yeon, J.M. Lee, J.R. Chao, Y.J. Lee, Y.B. Seo, M.T. Sultan, O.J. Lee, J.S. Lee, S.-I. Yoon, I.-S. Hong, G. Khang, S.J. Lee, J.J. Yoo, C.H. Park, Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing, Nat Commun. 9 (2018) 1620.
[24] Y. Hu, Y. Wu, Z. Gou, J. Tao, J. Zhang, Q. Liu, T. Kang, S. Jiang, S. Huang, J. He, S. Chen, Y. Du, M. Gou, 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration, Sci Rep. 6 (2016) 32184.
[25] K. Ikeda, D. Yamauchi, N. Osamura, N. Hagiwara, K. Tomita, Hyaluronic acid prevents peripheral nerve adhesion, British Journal of Plastic Surgery. 56 (2003) 342-347.
[26] M. Georgiou, J.P. Golding, A.J. Loughlin, P.J. Kingham, J.B. Phillips, Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve, Biomaterials. 37 (2015) 242-251.
[27] A. Bozkurt, A. Boecker, J. Tank, H. Altinova, R. Deumens, C. Dabhi, R. Tolba, J. Weis, G.A. Brook, N. Pallua, S.G.A. van Neerven, Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold, Biomaterials. 75 (2016) 112-122.
[28] S. Kehoe, X.F. Zhang, D. Boyd, FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy, Injury. 43 (2012) 553-572.
[29] M.D. Sarker, S. Naghieh, A.D. McInnes, D.J. Schreyer, X. Chen, Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli, Prog Neurobiol. 171 (2018) 125-150.
[30] W. Zhu, K.R. Tringale, S.A. Woller, S. You, S. Johnson, H. Shen, J. Schimelman, M. Whitney, J. Steinauer, W. Xu, T.L. Yaksh, Q.T. Nguyen, S. Chen, Rapid continuous 3D printing of customizable peripheral nerve guidance conduits, Mater Today (Kidlington). 21 (2018) 951-959.
[31] A. Singh, S. Asikainen, A.K. Teotia, P.A. Shiekh, E. Huotilainen, I. Qayoom, J. Partanen, J. Seppälä, A. Kumar, Biomimetic Photocurable Three-Dimensional Printed Nerve Guidance Channels with Aligned Cryomatrix Lumen for Peripheral Nerve Regeneration, ACS Appl Mater Interfaces. 10 (2018) 43327-43342.
[32] C.J. Pateman, A.J. Harding, A. Glen, C.S. Taylor, C.R. Christmas, P.P. Robinson, S. Rimmer, F.M. Boissonade, F. Claeyssens, J.W. Haycock, Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair, Biomaterials. 49 (2015) 77-89.
[33] M.S. Evangelista, M. Perez, A.A. Salibian, J.M. Hassan, S. Darcy, K.Z. Paydar, R.B. Wicker, K. Arcaute, B.K. Mann, G.R.D. Evans, Single-lumen and multi-lumen poly(ethylene glycol) nerve conduits fabricated by stereolithography for peripheral nerve regeneration in vivo, J Reconstr Microsurg. 31 (2015) 327-335.
[34] D. Radulescu, S. Dhar, C.M. Young, D.W. Taylor, H.-J. Trost, D.J. Hayes, G.R. Evans, Tissue engineering scaffolds for nerve regeneration manufactured by ink-jet technology, Materials Science and Engineering: C. 27 (2007) 534-539.
[35] D. Singh, A.J. Harding, E. Albadawi, F.M. Boissonade, J.W. Haycock, F. Claeyssens, Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits, Acta Biomater. 78 (2018) 48-63.
[36] S.-J. Lee, T. Esworthy, S. Stake, S. Miao, Y.Y. Zuo, B.T. Harris, L.G. Zhang, Advances in 3D Bioprinting for Neural Tissue Engineering, Advanced Biosystems. 2 (2018) 1700213.
[37] Y.D. Kim, J.H. Kim, Synthesis of polypyrrole-polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions, Colloid Polym Sci. 286 (2008) 631-637.
[38] E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, J. Mey, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend, Biomaterials. 28 (2007) 3012-3025.
[39] W. Chang, M.B. Shah, P. Lee, X. Yu, Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration, Acta Biomater. 73 (2018) 302-311.
[40] L. Huang, L. Zhu, X. Shi, B. Xia, Z. Liu, S. Zhu, Y. Yang, T. Ma, P. Cheng, K. Luo, J. Huang, Z. Luo, A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo, Acta Biomater. 68 (2018) 223-236.
[41] S.H. Oh, J.H. Kim, K.S. Song, B.H. Jeon, J.H. Yoon, T.B. Seo, U. Namgung, I.W. Lee, J.H. Lee, Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit, Biomaterials. 29 (2008) 1601-1609.
[42] C. Xue, N. Hu, Y. Gu, Y. Yang, Y. Liu, J. Liu, F. Ding, X. Gu, Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve, Neurorehabil Neural Repair. 26 (2012) 96-106.
[43] K. Arcaute, B.K. Mann, R.B. Wicker, Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells, Ann Biomed Eng. 34 (2006) 1429-1441.
[44] Ş.U. Karabiberoğlu, Ç.C. Koçak, Z. Dursun, Carbon Nanotube-Conducting Polymer Composites as Electrode Material in Electroanalytical Applications, IntechOpen, 2016.
[45] J. Connor, D. McQuillan, M. Sandor, H. Wan, J. Lombardi, N. Bachrach, J. Harper, H. Xu, Retention of structural and biochemical integrity in a biological mesh supports tissue remodeling in a primate abdominal wall model, Regen Med. 4 (2009) 185-195.
[46] Y. Liu, S. Hsu, Biomaterials and neural regeneration, Neural Regen Res. 15 (2020) 1243-1244.
[47] M.L.B. Palacio, B. Bhushan, Bioadhesion: a review of concepts and applications, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 370 (2012) 2321-2347.
[48] M. Kazemzadeh-Narbat, N. Annabi, A. Khademhosseini, Surgical sealants and high strength adhesives, Materials Today. 18 (n.d.) 176-177.
[49] H.L. Mobley, R.M. Garner, G.R. Chippendale, J.V. Gilbert, A.V. Kane, A.G. Plaut, Role of Hpn and NixA of Helicobacter pylori in susceptibility and resistance to bismuth and other metal ions, Helicobacter. 4 (1999) 162-169.
[50] F. Scognamiglio, A. Travan, I. Rustighi, P. Tarchi, S. Palmisano, E. Marsich, M. Borgogna, I. Donati, N. de Manzini, S. Paoletti, Adhesive and sealant interfaces for general surgery applications, J Biomed Mater Res B Appl Biomater. 104 (2016) 626-639.
[51] T.O. Smith, D. Sexton, C. Mann, S. Donell, Sutures versus staples for skin closure in orthopaedic surgery: meta-analysis, BMJ. 340 (2010) c1199.
[52] L. Qiu, A.A. Qi See, T.W.J. Steele, N.K. Kam King, Bioadhesives in neurosurgery: a review, J Neurosurg. (2019) 1-11.
[53] N. Annabi, K. Yue, A. Tamayol, A. Khademhosseini, Elastic sealants for surgical applications, Eur J Pharm Biopharm. 95 (2015) 27-39.
[54] W.D. Spotnitz, Commercial fibrin sealants in surgical care, Am J Surg. 182 (2001) 8S-14S.
[55] L. Foster, Bioadhesives as Surgical Sealants: A Review, in: 2015: pp. 203-234.
[56] G. Lopezcarasa-Hernandez, J.-F. Perez-Vazquez, J.-L. Guerrero-Naranjo, M.A. Martinez-Castellanos, Versatility of use of fibrin glue in wound closure and vitreo-retinal surgery, International Journal of Retina and Vitreous. 7 (2021) 33.
[57] D.M. Albala, Fibrin sealants in clinical practice, Cardiovasc Surg. 11 Suppl 1 (2003) 5-11.
[58] H. Nakamura, Y. Matsuyama, H. Yoshihara, Y. Sakai, Y. Katayama, S. Nakashima, J. Takamatsu, N. Ishiguro, The effect of autologous fibrin tissue adhesive on postoperative cerebrospinal fluid leak in spinal cord surgery: a randomized controlled trial, Spine (Phila Pa 1976). 30 (2005) E347-351.
[59] S. Ito, K. Nagayama, N. Iino, I. Saito, Y. Takami, Frontal sinus repair with free autologous bone grafts and fibrin glue, Surgical Neurology. 60 (2003) 155-158.
[60] D.M. Albala, J.H. Lawson, Recent clinical and investigational applications of fibrin sealant in selected surgical specialties, J Am Coll Surg. 202 (2006) 685-697.
[61] H.A. Crockard, The transoral approach to the base of the brain and upper cervical cord, Ann R Coll Surg Engl. 67 (1985) 321-325.
[62] H. Hasegawa, S. Bitoh, J. Obashi, M. Maruno, Closure of carotid-cavernous fistulae by use of a fibrin adhesive system, Surgical Neurology. 24 (1985) 23-26.
[63] A. Kassam, M. Horowitz, R. Carrau, C. Snyderman, W. Welch, B. Hirsch, Y.F. Chang, Use of Tisseel fibrin sealant in neurosurgical procedures: incidence of cerebrospinal fluid leaks and cost-benefit analysis in a retrospective study, Neurosurgery. 52 (2003) 1102-1105; discussion 1105.
[64] N.P. Biscola, L.P. Cartarozzi, S. Ulian-Benitez, R. Barbizan, M.V. Castro, A.B. Spejo, R.S. Ferreira, B. Barraviera, A.L.R. Oliveira, Multiple uses of fibrin sealant for nervous system treatment following injury and disease, Journal of Venomous Animals and Toxins Including Tropical Diseases. 23 (2017) 13.
[65] F.H. Silver, M.C. Wang, G.D. Pins, Preparation and use of fibrin glue in surgery, Biomaterials. 16 (1995) 891-903.
[66] D.V. Egloff, A. Narakas, C. Bonnard, Results of Nerve Grafts with Tissucol (Tisseel) Anastomosis, in: G. Schlag, H. Redl (Eds.), Fibrin Sealant in Operative Medicine, Springer, Berlin, Heidelberg, 1986: pp. 181-185.
[67] A. Narakas, The Use of Fibrin Glue in Repair of Peripheral Nerves, Orthopedic Clinics of North America. 19 (1988) 187-199.
[68] J. Haase, E. Falk, F.F. Madsen, P.S. Teglbjærg, Experimental and Clinical Use of Tisseel (Tissucol) and Muscle to Reinforce Rat Arteries and Human Cerebral Saccular Aneurysms, in: G. Schlag, H. Redl (Eds.), Fibrin Sealant in Operative Medicine, Springer, Berlin, Heidelberg, 1986: pp. 172-175.
[69] G. Parenti, B. Lenzi, Clinical and Angiographic Results in 47 Microsurgical Anastomoses for Cerebral Revascularization, in: G. Schlag, H. Redl (Eds.), Fibrin Sealant in Operative Medicine, Springer, Berlin, Heidelberg, 1986: pp. 123-128.
[70] H.R. Eggert, W. Seeger, V. Kallmeyer, Application of Fibrin Sealant in Microneurosurgery, in: G. Schlag, H. Redl (Eds.), Fibrin Sealant in Operative Medicine, Springer, Berlin, Heidelberg, 1986: pp. 139-143.
[71] C.M. Poser, Trauma to the central nervous system may result in formation or enlargement of multiple sclerosis plaques, Arch Neurol. 57 (2000) 1074-1077, discussion 1078.
[72] K. Kurpinski, S. Patel, Dura mater regeneration with a novel synthetic, bilayered nanofibrous dural substitute: an experimental study, Https://Doi.Org/10.2217/Nnm.10.132. (2011).
[73] M. Pierson, P.V. Birinyi, S. Bhimireddy, J.R. Coppens, Analysis of Decompressive Craniectomies with Subsequent Cranioplasties in the Presence of Collagen Matrix Dural Substitute and Polytetrafluoroethylene as an Adhesion Preventative Material, World Neurosurgery. 86 (2016) 153-160.
[74] N.-X. Xiong, D.A. Tan, P. Fu, Y.-Z. Huang, S. Tong, H. Yu, Healing of Deep Wound Infection without Removal of Non-Absorbable Dura Mater (Neuro-Patch®): A Case Report, J Long Term Eff Med Implants. 26 (2016) 43-48.
[75] Y.-H. Huang, T.-C. Lee, W.-F. Chen, Y.-M. Wang, Safety of the nonabsorbable dural substitute in decompressive craniectomy for severe traumatic brain injury, J Trauma. 71 (2011) 533-537.
[76] K. Deng, Y. Yang, Y. Ke, C. Luo, M. Liu, Y. Deng, Q. Tian, Y. Yuan, T. Yuan, T. Xu, A novel biomimetic composite substitute of PLLA/gelatin nanofiber membrane for dura repairing, Neurol Res. 39 (2017) 819-829.
[77] P. Schmalz, C. Griessenauer, C.S. Ogilvy, A.J. Thomas, Use of an Absorbable Synthetic Polymer Dural Substitute for Repair of Dural Defects: A Technical Note, Cureus. 10 (n.d.) e2127.
[78] S. Yamagata, K. Goto, Y. Oda, H. Kikuchi, Clinical experience with expanded polytetrafluoroethylene sheet used as an artificial dura mater, Neurol Med Chir (Tokyo). 33 (1993) 582-585.
[79] J.-S. Raul, J. Godard, F. Arbez-Gindre, A. Czorny, [Use of polyester urethane (Neuro-Patch) as a dural substitute. Prospective study of 70 cases], Neurochirurgie. 49 (2003) 83-89.
[80] F. Van Calenbergh, E. Quintens, R. Sciot, J. Van Loon, J. Goffin, C. Plets, The use of Vicryl Collagen® as a dura substitute: A clinical review of 78 surgical cases, Acta Neurochir. 139 (1997) 120-123.
[81] F. San-Galli, G. Deminière, J. Guérin, M. Rabaud, Use of a biodegradable elastin-fibrin material, Neuroplast®, as a dural substitute, Biomaterials. 17 (1996) 1081-1085.
[82] P. Dibajnia, C.M. Morshead, Role of neural precursor cells in promoting repair following stroke, Acta Pharmacol Sin. 34 (2013) 78-90.
[83] T.M. Bliss, R.H. Andres, G.K. Steinberg, Optimizing the Success of Cell Transplantation Therapy for Stroke, Neurobiol Dis. 37 (2010) 275.
[84] K. Jin, X. Mao, L. Xie, V. Galvan, B. Lai, Y. Wang, O. Gorostiza, X. Wang, D.A. Greenberg, Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats, J Cereb Blood Flow Metab. 30 (2010) 534-544.
[85] F.-M. Chen, X. Liu, Advancing biomaterials of human origin for tissue engineering, Prog Polym Sci. 53 (2016) 86-168.
[86] E. Bible, O. Qutachi, D.Y.S. Chau, M.R. Alexander, K.M. Shakesheff, M. Modo, Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles, Biomaterials. 33 (2012) 7435-7446.
[87] H. Ghuman, M. Modo, Biomaterial applications in neural therapy and repair, Chinese Neurosurgical Journal. 2 (2016) 34.
[88] W. Taki, Y. Yonekawa, H. Iwata, A. Uno, K. Yamashita, H. Amemiya, A new liquid material for embolization of arteriovenous malformations, AJNR Am J Neuroradiol. 11 (1990) 163-168.
[89] K. Yamashita, W. Taki, H. Iwata, I. Nakahara, S. Nishi, A. Sadato, K. Matsumoto, H. Kikuchi, Characteristics of ethylene vinyl alcohol copolymer (EVAL) mixtures, AJNR Am J Neuroradiol. 15 (1994) 1103-1105.
[90] K. Yamashita, W. Taki, H. Iwata, H. Kikuchi, A cationic polymer, Eudragit-E, as a new liquid embolic material for arteriovenous malformations, Neuroradiology. 38 Suppl 1 (1996) S151-156.
[91] A. Sadato, Y. Numaguchi, W. Taki, H. Iwata, K. Yamshita, Nonadhesive liquid embolic agent: role of its components in histologic changes in embolized arteries, Acad Radiol. 5 (1998) 198-206.
[92] S. Mandai, K. Kinugasa, T. Ohmoto, Direct thrombosis of aneurysms with cellulose acetate polymer. Part I: Results of thrombosis in experimental aneurysms, J Neurosurg. 77 (1992) 497-500.
[93] K. Kinugasa, S. Mandai, Y. Terai, I. Kamata, K. Sugiu, T. Ohmoto, A. Nishimoto, Direct thrombosis of aneurysms with cellulose acetate polymer. Part II: Preliminary clinical experience, J Neurosurg. 77 (1992) 501-507.
[94] A. Sadato, W. Taki, Y. Ikada, I. Nakahara, K. Yamashita, K. Matsumoto, M. Tanaka, H. Kikuchi, Y. Doi, T. Noguchi, Experimental study and clinical use of poly(vinyl acetate) emulsion as liquid embolisation material, Neuroradiology. 36 (1994) 634-641.
[95] K. Buchta, J. Sands, H. Rosenkrantz, W.D. Roche, Early mechanism of action of arterially infused alcohol U.S.P. in renal devitalization, Radiology. 145 (1982) 45-48.
[96] B.A. Ellman, B.J. Parkhill, P.B. Marcus, T.S. Curry, P.C. Peters, Renal ablation with absolute ethanol. Mechanism of action, Invest Radiol. 19 (1984) 416-423.
[97] J.C. Chaloupka, F. Viñuela, H.V. Vinters, J. Robert, Technical feasibility and histopathologic studies of ethylene vinyl copolymer (EVAL) using a swine endovascular embolization model, AJNR Am J Neuroradiol. 15 (1994) 1107-1115.
[98] D. Samson, Q.M. Ditmore, C.W. Beyer, Intravascular use of isobutyl 2-cyanoacrylate: Part 1 Treatment of intracranial arteriovenous malformations, Neurosurgery. 8 (1981) 43-51.
[99] G. Debrun, F. Vinuela, A. Fox, C.G. Drake, Embolization of cerebral arteriovenous malformations with bucrylate: Experience in 46 cases, Journal of Neurosurgery. 56 (1982) 615-627.
[100] M.F. Brothers, J.C. Kaufmann, A.J. Fox, J.P. Deveikis, n-Butyl 2-cyanoacrylate–substitute for IBCA in interventional neuroradiology: histopathologic and polymerization time studies, AJNR Am J Neuroradiol. 10 (1989) 777-786.
[101] R.E. Kania, E. Sauvaget, J.-P. Guichard, R. Chapot, P.T.B. Huy, P. Herman, Early postoperative CT scanning for juvenile nasopharyngeal angiofibroma: detection of residual disease, AJNR Am J Neuroradiol. 26 (2005) 82-88.
[102] R.J. Rosen, S. Contractor, The use of cyanoacrylate adhesives in the management of congenital vascular malformations, Semin Intervent Radiol. 21 (2004) 59-66.
[103] H.V. Vinters, K.A. Galil, M.J. Lundie, J.C.E. Kaufmann, The histotoxicity of cyanoacrylates, Neuroradiology. 27 (1985) 279-291.
[104] H. Hill, J.F.B. Chick, A. Hage, R.N. Srinivasa, N-butyl cyanoacrylate embolotherapy: techniques, complications, and management, Diagn Interv Radiol. 24 (2018) 98-103.
[105] A.G. Thrift, H.M. Dewey, R.A. Macdonell, J.J. McNeil, G.A. Donnan, Incidence of the major stroke subtypes: initial findings from the North East Melbourne stroke incidence study (NEMESIS), Stroke. 32 (2001) 1732-1738.
[106] J.P. Broderick, William M. Feinberg Lecture: Stroke Therapy in the Year 2025, Stroke. 35 (2004) 205-211.
[107] E.J. Smith, R.P. Stroemer, N. Gorenkova, M. Nakajima, W.R. Crum, E. Tang, L. Stevanato, J.D. Sinden, M. Modo, Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke, Stem Cells. 30 (2012) 785-796.
[108] A. Encarnacion, N. Horie, H. Keren-Gill, T.M. Bliss, G.K. Steinberg, M. Shamloo, Long-term behavioral assessment of function in an experimental model for ischemic stroke, J Neurosci Methods. 196 (2011) 247-257.
[109] F. Moreau, S. Patel, M.L. Lauzon, C.R. McCreary, M. Goyal, R. Frayne, A.M. Demchuk, S.B. Coutts, E.E. Smith, Cavitation after acute symptomatic lacunar stroke depends on time, location, and MRI sequence, Stroke. 43 (2012) 1837-1842.
[110] K.I. Park, Y.D. Teng, E.Y. Snyder, The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue, Nat Biotechnol. 20 (2002) 1111-1117.
[111] E. Bible, D.Y.S. Chau, M.R. Alexander, J. Price, K.M. Shakesheff, M. Modo, The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles, Biomaterials. 30 (2009) 2985-2994.
[112] K. Duncan, G.S. Gonzales-Portillo, S.A. Acosta, Y. Kaneko, C.V. Borlongan, N. Tajiri, Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy, Brain Res. 1623 (2015) 160-165.
[113] H. Yu, B. Cao, M. Feng, Q. Zhou, X. Sun, S. Wu, S. Jin, H. Liu, J. Lianhong, Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats, Anat Rec (Hoboken). 293 (2010) 911-917.
[114] B. Oh, P. George, Conductive polymers to modulate the post-stroke neural environment, Brain Research Bulletin. 148 (2019) 10-17.
[115] R.A. Sobel, The extracellular matrix in multiple sclerosis lesions, J Neuropathol Exp Neurol. 57 (1998) 205-217.
[116] S.-Z. Guo, X.-J. Ren, B. Wu, T. Jiang, Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility, Spinal Cord. 48 (2010) 576-581.
[117] P.M. Crapo, C.J. Medberry, J.E. Reing, S. Tottey, Y. van der Merwe, K.E. Jones, S.F. Badylak, Biologic scaffolds composed of central nervous system extracellular matrix, Biomaterials. 33 (2012) 3539-3547.
[118] B.G. Ballios, M.J. Cooke, L. Donaldson, B.L.K. Coles, C.M. Morshead, D. van der Kooy, M.S. Shoichet, A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation, Stem Cell Reports. 4 (2015) 1031-1045.
[119] R.K. Mittapalli, X. Liu, C.E. Adkins, M.I. Nounou, K.A. Bohn, T.B. Terrell, H.S. Qhattal, W.J. Geldenhuys, D. Palmieri, P.S. Steeg, Q.R. Smith, P.R. Lockman, Paclitaxel-Hyaluronic NanoConjugates Prolong Overall Survival in a Preclinical Brain Metastases of Breast Cancer Model, Mol Cancer Ther. 12 (2013) 2389-2399.
[120] J. Lam, W.E. Lowry, S.T. Carmichael, T. Segura, Delivery of iPS-NPCs to the Stroke Cavity within a Hyaluronic Acid Matrix Promotes the Differentiation of Transplanted Cells, Adv Funct Mater. 24 (2014) 7053-7062.
[121] N.B. Skop, F. Calderon, S.W. Levison, C.D. Gandhi, C.H. Cho, Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair, Acta Biomater. 9 (2013) 6834-6843.
[122] Y. Wu, W. Wei, M. Zhou, Y. Wang, J. Wu, G. Ma, Z. Su, Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization, Biomaterials. 33 (2012) 2351-2360.
[123] A.J.T. Hyatt, D. Wang, J.C. Kwok, J.W. Fawcett, K.R. Martin, Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord, J Control Release. 147 (2010) 24-29.
[124] T. Nakaji-Hirabayashi, K. Kato, H. Iwata, In vivo study on the survival of neural stem cells transplanted into the rat brain with a collagen hydrogel that incorporates laminin-derived polypeptides, Bioconjug Chem. 24 (2013) 1798-1804.
[125] V.L. Cross, Y. Zheng, N. Won Choi, S.S. Verbridge, B.A. Sutermaster, L.J. Bonassar, C. Fischbach, A.D. Stroock, Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro, Biomaterials. 31 (2010) 8596-8607.
[126] D. Jiang, J. Liang, P.W. Noble, Hyaluronan in tissue injury and repair, Annu Rev Cell Dev Biol. 23 (2007) 435-461.
[127] J. Zhong, A. Chan, L. Morad, H.I. Kornblum, G. Fan, S.T. Carmichael, Hydrogel matrix to support stem cell survival after brain transplantation in stroke, Neurorehabil Neural Repair. 24 (2010) 636-644.
[128] J.S. Lewis, K. Roy, B.G. Keselowsky, Materials that harness and modulate the immune system, MRS Bull. 39 (2014) 25-34.
[129] J.E. Rinholm, N.B. Hamilton, N. Kessaris, W.D. Richardson, L.H. Bergersen, D. Attwell, Regulation of oligodendrocyte development and myelination by glucose and lactate, J Neurosci. 31 (2011) 538-548.
[130] H.K. Makadia, S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers (Basel). 3 (2011) 1377-1397.
[131] M.J. Cooke, Y. Wang, C.M. Morshead, M.S. Shoichet, Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain, Biomaterials. 32 (2011) 5688-5697.