Polymers in Clinical Medicine


Polymers in Clinical Medicine

R.E. Padilla-Hernández, A.L. Ramos-Jacques, A.R. Hernandez-Martinez

The use of polymeric materials for clinical purposes has advanced through improved methods of synthesis and chemical modification. Adapting polymers for medical purposes involves varying parameters such as molecular weight, crystallinity, and crosslinking degree. Polymers for device development in medicine must meet specific characteristics (flexibility, ease of use, biocompatibility) for their use in diagnosis, monitoring, and treatment. Polymers can be used as antibacterial coatings, dialysis membranes and wound dressing applications, but polymeric materials in the field of clinical medicine have countless uses. This chapter describes an overview in three content sections: (1) summary of the most common polymers with medical purposes, (2) examples of medical polymeric materials through selected physico-chemical properties and (3) advances of polymers for improving health at the stages of diagnosis, monitoring, and treatment.

Poly(lactic acid), Chitosan, PEG, Point-of-Care, Drug Delivery

Published online 4/20/2022, 29 pages

Citation: R.E. Padilla-Hernández, A.L. Ramos-Jacques, A.R. Hernandez-Martinez, Polymers in Clinical Medicine, Materials Research Foundations, Vol. 123, pp 1-29, 2022

DOI: https://doi.org/10.21741/9781644901892-1

Part of the book on Applications of Polymers in Surgery

[1] D. Hutmacher, M.B. Hürzeler, H. Schliephake, A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications., Int. J. Oral Maxillofac. Implants. 11 (1996).
[2] C.L. Burrell, S.M. Canavan, M.M. Emery, J.C. Ohman, Broken bones: Trauma analysis on a medieval population from Poulton, Cheshire, Explor. Mediev. Cult. Ser. (2018) 71–91. https://doi.org/10.1163/9789004363786_005
[3] F.S. Shahar, M.T.H. Sultan, S.H. Lee, M. Jawaid, A.U.M. Shah, S.N.A. Safri, P.N. Sivasankaran, A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis, J. Mech. Behav. Biomed. Mater. 99 (2019) 169–185. https://doi.org/10.1016/j.jmbbm.2019.07.020
[4] Y.-J. Chen, H. Lin, X. Zhang, W. Huang, L. Shi, D. Wang, Application of 3D–printed and patient-specific cast for the treatment of distal radius fractures: initial experience, 3D Print. Med. 3 (2017) 11. https://doi.org/10.1186/s41205-017-0019-y
[5] P.S.P. Poh, M.A. Woodruff, E. Garc\’ıa-Gareta, Polymer-based composites for musculoskeletal regenerative medicine, in: Biomater. Organ Tissue Regen., Elsevier, 2020: pp. 33–82. https://doi.org/10.1016/B978-0-08-102906-0.00003-9
[6] M.F. Maitz, Applications of synthetic polymers in clinical medicine, Biosurface Biotribology. 1 (2015) 161–176. https://doi.org/10.1016/j.bsbt.2015.08.002
[7] A.P. Vieira, A.F.R. Pimenta, D. Silva, M.H. Gil, P. Alves, P. Coimbra, J.L.G.C. Mata, D. Bozukova, T.R. Correia, I.J. Correia, Others, Surface modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin, Eur. J. Pharm. Biopharm. 120 (2017) 52–62. https://doi.org/10.1016/j.ejpb.2017.08.006
[8] G.B. Jung, K.-H. Jin, H.-K. Park, Physicochemical and surface properties of acrylic intraocular lenses and their clinical significance, J. Pharm. Investig. 47 (2017) 453–460. https://doi.org/10.1007/s40005-017-0323-y
[9] D. Lee, S. Cho, H.S. Park, I. Kwon, Ocular drug delivery through pHEMA-Hydrogel contact lenses Co-loaded with lipophilic vitamins, Sci. Rep. 6 (2016) 1–8. https://doi.org/10.1038/s41598-016-0001-8
[10] C. Sun, Y.-X. Wang, M. Sun, Y. Zou, C. Zhang, S. Cheng, W. Hu, Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors, Biosens. Bioelectron. 164 (2020) 112251. https://doi.org/10.1016/j.bios.2020.112251
[11] N. Wang, A. Yang, Y. Fu, Y. Li, F. Yan, Functionalized organic thin film transistors for biosensing, Acc. Chem. Res. 52 (2019) 277–287. https://doi.org/10.1021/acs.accounts.8b00448
[12] K. Liang, Y. Gao, S. Xiao, F.R. Tay, M.D. Weir, X. Zhou, T.W. Oates, C. Zhou, J. Li, H.H.K. Xu, Poly (amido amine) and rechargeable adhesive containing calcium phosphate nanoparticles for long-term dentin remineralization, J. Dent. 85 (2019) 47–56. https://doi.org/10.1016/j.jdent.2019.04.011
[13] E.E. Totu, A.C. Nechifor, G. Nechifor, H.Y. Aboul-Enein, C.M. Cristache, Poly (methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing- the fututre in dental care for elderly edentulous patients?, J. Dent. 59 (2017) 68–77. https://doi.org/10.1016/j.jdent.2017.02.012
[14] T. Lenz-Habijan, P. Bhogal, M. Peters, A. Bufe, R.M. Moreno, C. Bannewitz, H. Monstadt, H. Henkes, Hydrophilic stent coating inhibits platelet adhesion on stent surfaces: initial results in vitro, Cardiovasc. Intervent. Radiol. 41 (2018) 1779–1785. https://doi.org/10.1007/s00270-018-2036-7
[15] C. Bodart, N. Rossetti, J. Hagler, P. Chevreau, D. Chhin, F. Soavi, S.B. Schougaard, F. Amzica, F. Cicoira, Electropolymerized poly (3, 4-ethylenedioxythiophene)(PEDOT) coatings for implantable deep-brain-stimulating microelectrodes, ACS Appl. Mater. Interfaces. 11 (2019) 17226–17233. https://doi.org/10.1021/acsami.9b03088
[16] A. Golabchi, B. Wu, B. Cao, C.J. Bettinger, X.T. Cui, Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants, Biomaterials. 225 (2019) 119519. https://doi.org/10.1016/j.biomaterials.2019.119519
[17] R.L. Li, J. Russ, C. Paschalides, G. Ferrari, H. Waisman, J.W. Kysar, D. Kalfa, Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing, Biomaterials. 225 (2019) 119493. https://doi.org/10.1016/j.biomaterials.2019.119493
[18] J.R. Stasiak, M. Serrani, E. Biral, J.V. Taylor, A.G. Zaman, S. Jones, T. Ness, F. De Gaetano, M.L. Costantino, V.D. Bruno, Others, Design, development, testing at ISO standards and in vivo feasibility study of a novel polymeric heart valve prosthesis, Biomater. Sci. 8 (2020) 4467–4480. https://doi.org/10.1039/D0BM00412J
[19] E. Ovcharenko, M. Rezvova, P. Nikishau, S. Kostjuk, T. Glushkova, L. Antonova, D. Trebushat, T. Akentieva, D. Shishkova, E. Krivikina, Others, Polyisobutylene-based thermoplastic elastomers for manufacturing polymeric heart valve leaflets: In vitro and in vivo results, Appl. Sci. 9 (2019) 4773. https://doi.org/10.3390/app9224773
[20] H. Akai, K. Shiraishi, M. Yokoyama, K. Yasaka, M. Nojima, Y. Inoue, O. Abe, K. Ohtomo, S. Kiryu, PEG-poly (L-lysine)-based polymeric micelle MRI contrast agent: Feasibility study of a Gd-micelle contrast agent for MR lymphography, J. Magn. Reson. Imaging. 47 (2018) 238–245. https://doi.org/10.1002/jmri.25740
[21] P. Lei, R. An, P. Zhang, S. Yao, S. Song, L. Dong, X. Xu, K. Du, J. Feng, H. Zhang, Ultrafast synthesis of ultrasmall poly (Vinylpyrrolidone)-protected Bismuth Nanodots as a multifunctional theranostic agent for in vivo dual-modal CT/Photothermal-imaging-guided photothermal therapy, Adv. Funct. Mater. 27 (2017) 1702018. https://doi.org/10.1002/adfm.201702018
[22] O. Ter Beek, D. Pavlenko, M. Suck, S. Helfrich, L. Bolhuis-Versteeg, D. Snisarenko, C. Causserand, P. Bacchin, P. Aimar, R. van Oerle, Others, New membranes based on polyethersulfone–SlipSkinTM polymer blends with low fouling and high blood compatibility, Sep. Purif. Technol. 225 (2019) 60–73. https://doi.org/10.1016/j.seppur.2019.05.049
[23] A. Boschetti-de-Fierro, W. Beck, H. Hildwein, B. Krause, M. Storr, C. Zweigart, Membrane innovation in dialysis, Expand. Hemodial. 191 (2017) 100–114. https://doi.org/10.1159/000479259
[24] P. Ganesan, Natural and bio polymer curative films for wound dressing medical applications, Wound Med. 18 (2017) 33–40. https://doi.org/10.1016/j.wndm.2017.07.002
[25] E.A. Kamoun, E.-R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, J. Adv. Res. 8 (2017) 217–233. https://doi.org/10.1016/j.jare.2017.01.005
[26] P. Khandelwal, A. Das, C.K. Sen, S.P. Srinivas, S. Roy, S. Khanna, A surfactant polymer wound dressing protects human keratinocytes from inducible necroptosis, Sci. Rep. 11 (2021) 1–15. https://doi.org/10.1038/s41598-021-82260-x
[27] R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, K. Zhang, L. Yin, J. Guan, X. Sheng, Implantable and biodegradable poly (L-lactic acid) fibers for optical neural interfaces, Adv. Opt. Mater. 6 (2018) 1700941. https://doi.org/10.1002/adom.201700941
[28] R. Ramachandran, V.R. Junnuthula, G.S. Gowd, A. Ashokan, J. Thomas, R. Peethambaran, A. Thomas, A.K.K. Unni, D. Panikar, S.V. Nair, Others, Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma, Sci. Rep. 7 (2017) 1–16. https://doi.org/10.1038/s41598-016-0028-x
[29] Y. Zhou, L. Kang, Z. Yue, X. Liu, G.G. Wallace, Composite tissue adhesive containing catechol-modified hyaluronic acid and poly-l-lysine, ACS Appl. Bio Mater. 3 (2019) 628–638. https://doi.org/10.1021/acsabm.9b01003
[30] B. Peng, X. Lai, L. Chen, X. Lin, C. Sun, L. Liu, S. Qi, Y. Chen, K.W. Leong, Scarless wound closure by a mussel-inspired poly (amidoamine) tissue adhesive with tunable degradability, ACS Omega. 2 (2017) 6053–6062. https://doi.org/10.1021/acsomega.7b01221
[31] D. Mendes Junior, J.A. Domingues, M.A. Hausen, S.M.M. Cattani, A. Aragones, A.L.R. Oliveira, R.F. Inácio, M.L.P. Barbo, E.A.R. Duek, Study of mesenchymal stem cells cultured on a poly (lactic-co-glycolic acid) scaffold containing simvastatin for bone healing, J. Appl. Biomater. Funct. Mater. 15 (2017) 133–141. https://doi.org/10.5301/jabfm.5000338
[32] S. Srisang, N. Wongsuwan, A. Boongird, M. Ungsurungsie, P. Wanasawas, N. Nasongkla, Multilayer nanocoating of Foley urinary catheter by chlorhexidine-loaded nanoparticles for prolonged release and anti-infection of urinary tract, Int. J. Polym. Mater. Polym. Biomater. 69 (2020) 1081–1089. https://doi.org/10.1080/00914037.2019.1655752
[33] S. Kariya, M. Nakatani, Y. Ono, T. Maruyama, Y. Ueno, A. Komemushi, N. Tanigawa, Assessment of the antithrombogenicity of a poly-2-methoxyethylacrylate-coated central venous port-catheter system, Cardiovasc. Intervent. Radiol. (2020) 1–6. https://doi.org/10.1177/1129729820983175
[34] P. Ahmadi, N. Nazeri, M.A. Derakhshan, H. Ghanbari, Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering, Int. J. Biol. Macromol. 180 (2021) 590–598. https://doi.org/10.1016/j.ijbiomac.2021.03.001
[35] N. Celikkin, S. Mastrogiacomo, J. Jaroszewicz, X.F. Walboomers, W. Swieszkowski, Gelatin methacrylate scaffold for bone tissue engineering: the influence of polymer concentration, J. Biomed. Mater. Res. A. 106 (2018) 201–209. https://doi.org/10.1002/jbm.a.36226
[36] Y. Zhang, K. Kang, N. Zhu, G. Li, X. Zhou, A. Zhang, Q. Yi, Y. Wu, Bottlebrush-like highly efficient antibacterial coating constructed using α-helical peptide dendritic polymers on the poly (styrene-b-(ethylene-co-butylene)-b-styrene) surface, J. Mater. Chem. B. 8 (2020) 7428–7437. https://doi.org/10.1039/D0TB01336F
[37] H. Gulliksson, S. Meinke, A. Ravizza, L. Larsson, P. Höglund, Storage of red blood cells in a novel polyolefin blood container: a pilot in vitro study, Vox Sang. 112 (2017) 33–39. https://doi.org/10.1111/vox.12472
[38] S. Sarigul Guduk, N. Karaca, Safety and complications of absorbable threads made of poly-L-lactic acid and poly lactide/glycolide: experience with 148 consecutive patients, J. Cosmet. Dermatol. 17 (2018) 1189–1193. https://doi.org/10.1111/jocd.12519
[39] F. López-Saucedo, G.G. Flores-Rojas, E. Bucio, C. Alvarez-Lorenzo, A. Concheiro, O. González-Antonio, Achieving antimicrobial activity through poly (N-methylvinylimidazolium) iodide brushes on binary-grafted polypropylene suture threads, MRS Commun. 7 (2017) 938–946. https://doi.org/10.1557/mrc.2017.121
[40] S.J. Lee, H.H. Jo, K.S. Lim, D. Lim, S. Lee, J.H. Lee, W.D. Kim, M.H. Jeong, J.Y. Lim, I.K. Kwon, Others, Heparin coating on 3D printed poly (l-lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation, Chem. Eng. J. 378 (2019) 122116. https://doi.org/10.1016/j.cej.2019.122116
[41] K. Wang, Q. Zhang, L. Zhao, Y. Pan, T. Wang, D. Zhi, S. Ma, P. Zhang, T. Zhao, S. Zhang, Others, Functional modification of electrospun poly (ε-caprolactone) vascular grafts with the fusion protein VEGF–HGFI enhanced vascular regeneration, ACS Appl. Mater. Interfaces. 9 (2017) 11415–11427. https://doi.org/10.1021/acsami.6b16713
[42] M. Rahman, M.R. Hasan, Synthetic biopolymers, Funct. Biopolym. Ed. Jafar Mazumder MA Shear. H Al-Ahmed Ed. Springer Int. Publ. (2019) 1–43.
[43] B. Nagel, H. Dellweg, L.M. Gierasch, Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992), Pure Appl. Chem. 64 (1992) 143–168. https://doi.org/10.1351/pac199264010143
[44] Y. Nishio, Material functionalization of cellulose and related polysaccharides via diverse microcompositions, Polysacch. II. (2006) 97–151. https://doi.org/10.1007/12_095
[45] E. Pinho, G. Soares, Functionalization of cotton cellulose for improved wound healing, J. Mater. Chem. B. 6 (2018) 1887–1898. https://doi.org/10.1039/C8TB00052B
[46] H. Mertaniemi, C. Escobedo-Lucea, A. Sanz-Garcia, C. Gandía, A. Mäkitie, J. Partanen, O. Ikkala, M. Yliperttula, Human stem cell decorated nanocellulose threads for biomedical applications, Biomaterials. 82 (2016) 208–220. https://doi.org/10.1016/j.biomaterials.2015.12.020
[47] R.O. Ebewele, Polymerization Mechanisms, in: Polym. Sci. Technol., CRC Press, 2000.
[48] M.C. Hacker, J. Krieghoff, A.G. Mikos, Chapter 33 – Synthetic Polymers, in: A. Atala, R. Lanza, A.G. Mikos, R. Nerem (Eds.), Princ. Regen. Med. Third Ed., Academic Press, Boston, 2019: pp. 559–590. https://doi.org/10.1016/B978-0-12-809880-6.00033-3
[49] A. Kulcke, C. Gurschler, G. Spöck, R. Leitner, M. Kraft, On-Line Classification of Synthetic Polymers Using near Infrared Spectral Imaging, J. Infrared Spectrosc. 11 (2003) 71–81. https://doi.org/10.1255/jnirs.355
[50] M. Movahedi, A. Asefnejad, M. Rafienia, M.T. Khorasani, Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation, Int. J. Biol. Macromol. 146 (2020) 627–637. https://doi.org/10.1016/j.ijbiomac.2019.11.233
[51] S.M. Bittner, B.T. Smith, L. Diaz-Gomez, C.D. Hudgins, A.J. Melchiorri, D.W. Scott, J.P. Fisher, A.G. Mikos, Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering, Acta Biomater. 90 (2019) 37–48. https://doi.org/10.1016/j.actbio.2019.03.041
[52] S. Mondal, T.P. Nguyen, G. Hoang, P. Manivasagan, M.H. Kim, S.Y. Nam, J. Oh, Others, Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application, Ceram. Int. 46 (2020) 3443–3455. https://doi.org/10.1016/j.ceramint.2019.10.057
[53] L. Vogt, L.R. Rivera, L. Liverani, A. Piegat, M. El Fray, A.R. Boccaccini, Poly (ε-caprolactone)/poly (glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents, Mater. Sci. Eng. C. 103 (2019) 109712. https://doi.org/10.1016/j.msec.2019.04.091
[54] H. Li, F. Cheng, C. Chávez-Madero, J. Choi, X. Wei, X. Yi, T. Zheng, J. He, Manufacturing and physical characterization of absorbable oxidized regenerated cellulose braided surgical sutures, Int. J. Biol. Macromol. 134 (2019) 56–62. https://doi.org/10.1016/j.ijbiomac.2019.05.030
[55] R. Hua, Y. Tian, J. Cheng, G. Wu, W. Jiang, Z. Ni, G. Zhao, The effect of intrinsic characteristics on mechanical properties of poly (l-lactic acid) bioresorbable vascular stents, Med. Eng. Phys. 81 (2020) 118–124. https://doi.org/10.1016/j.medengphy.2020.04.006
[56] P.R. Neumann, D.L. Crossley, M. Turner, M. Ingleson, M. Green, J. Rao, L.A. Dailey, In vivo optical performance of a new class of near-infrared-emitting conjugated polymers: borylated PF8-BT, ACS Appl. Mater. Interfaces. 11 (2019) 46525–46535. https://doi.org/10.1021/acsami.9b17022
[57] D.N. Heo, S.-J. Lee, R. Timsina, X. Qiu, N.J. Castro, L.G. Zhang, Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering, Mater. Sci. Eng. C. 99 (2019) 582–590. https://doi.org/10.1016/j.msec.2019.02.008
[58] S. Kumar, M. Umar, A. Saifi, S. Kumar, S. Augustine, S. Srivastava, B.D. Malhotra, Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT: PSS, Anal. Chim. Acta. 1056 (2019) 135–145. https://doi.org/10.1016/j.aca.2018.12.053
[59] M. Aydin, E.B. Aydin, M.K. Sezgintürk, A highly selective electrochemical immunosensor based on conductive carbon black and star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva, Biosens. Bioelectron. 117 (2018) 720–728. https://doi.org/10.1016/j.bios.2018.07.010
[60] M. Tertiş, B. Ciui, M. Suciu, R. S\uandulescu, C. Cristea, Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection, Electrochimica Acta. 258 (2017) 1208–1218. https://doi.org/10.1016/j.electacta.2017.11.176
[61] M. Müller, B. Urban, B. Reis, X. Yu, A.L. Grab, E.A. Cavalcanti-Adam, D. Kuckling, Switchable Release of Bone Morphogenetic Protein from Thermoresponsive Poly (NIPAM-co-DMAEMA)/Cellulose Sulfate Particle Coatings, Polymers. 10 (2018) 1314. https://doi.org/10.3390/polym10121314
[62] K. Brewer, B. Gundsambuu, P. Facal Marina, S.C. Barry, A. Blencowe, Thermoresponsive poly (ε-Caprolactone)-poly (Ethylene/Propylene Glycol) copolymers as injectable hydrogels for cell therapies, Polymers. 12 (2020) 367. https://doi.org/10.3390/polym12020367
[63] T. Xu, Y. Ma, J. Huang, H. Lai, D. Yuan, X. Tang, L. Yang, Self-organized thermo-responsive poly (lactic-co-glycolic acid)-graft-pullulan nanoparticles for synergistic thermo-chemotherapy of tumor, Carbohydr. Polym. 237 (2020) 116104. https://doi.org/10.1016/j.carbpol.2020.116104
[64] Y.-T. Qin, H. Peng, X.-W. He, W.-Y. Li, Y.-K. Zhang, pH-Responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy, ACS Appl. Mater. Interfaces. 11 (2019) 34268–34281. https://doi.org/10.1021/acsami.9b12641
[65] A. Roointan, J. Farzanfar, S. Mohammadi-Samani, A. Behzad-Behbahani, F. Farjadian, Smart pH responsive drug delivery system based on poly (HEMA-co-DMAEMA) nanohydrogel, Int. J. Pharm. 552 (2018) 301–311. https://doi.org/10.1016/j.ijpharm.2018.10.001
[66] Z. Qin, T. Chen, W. Teng, Q. Jin, J. Ji, Mixed-charged zwitterionic polymeric micelles for tumor acidic environment responsive intracellular drug delivery, Langmuir. 35 (2018) 1242–1248. https://doi.org/10.1021/acs.langmuir.8b00471
[67] E. Bihar, S. Wustoni, A.M. Pappa, K.N. Salama, D. Baran, S. Inal, A fully inkjet-printed disposable glucose sensor on paper, Npj Flex. Electron. 2 (2018) 1–8. https://doi.org/10.1038/s41528-018-0044-y
[68] B.K. Shrestha, R. Ahmad, S. Shrestha, C.H. Park, C.S. Kim, Globular shaped polypyrrole doped well-dispersed functionalized multiwall carbon nanotubes/nafion composite for enzymatic glucose biosensor application, Sci. Rep. 7 (2017) 1–13. https://doi.org/10.1038/s41598-016-0028-x
[69] A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations, Sens. Actuators B Chem. 284 (2019) 568–574. https://doi.org/10.1016/j.snb.2018.12.164
[70] J. Wang, N. Hui, Zwitterionic poly (carboxybetaine) functionalized conducting polymer polyaniline nanowires for the electrochemical detection of carcinoembryonic antigen in undiluted blood serum, Bioelectrochemistry. 125 (2019) 90–96. https://doi.org/10.1016/j.bioelechem.2018.09.006
[71] S.M. Sheta, S.M. El-Sheikh, D.I. Osman, A.M. Salem, O.I. Ali, F.A. Harraz, W.G. Shousha, M.A. Shoeib, S.M. Shawky, D.D. Dionysiou, A novel HCV electrochemical biosensor based on a polyaniline@ Ni-MOF nanocomposite, Dalton Trans. 49 (2020) 8918–8926. https://doi.org/10.1039/D0DT01408G
[72] A.R. Rebelo, C. Liu, K.-H. Schäfer, M. Saumer, G. Yang, Y. Liu, Poly (4-vinylaniline)/polyaniline bilayer-functionalized bacterial cellulose for flexible electrochemical biosensors, Langmuir. 35 (2019) 10354–10366. https://doi.org/10.1021/acs.langmuir.9b01425
[73] M. Xu, Y. Song, Y. Ye, C. Gong, Y. Shen, L. Wang, L. Wang, A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode, Sens. Actuators B Chem. 252 (2017) 1187–1193. https://doi.org/10.1016/j.snb.2017.07.147
[74] X. Huang, W. Shi, J. Li, N. Bao, C. Yu, H. Gu, Determination of salivary uric acid by using poly (3, 4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device, Anal. Chim. Acta. 1103 (2020) 75–83. https://doi.org/10.1016/j.aca.2019.12.057
[75] K. Qu, S.M. Kondengaden, J. Li, X. Wang, M.D. Sevilla, L. Li, X. Zeng, Carbohydrate-functionalized polythiophene biointerface: design, fabrication, characterization and application for protein analysis, Appl. Surf. Sci. 486 (2019) 561–570. https://doi.org/10.1016/j.apsusc.2019.04.231
[76] M. Kim, R. Iezzi Jr, B.S. Shim, D.C. Martin, Impedimetric biosensors for detecting vascular endothelial growth factor (VEGF) based on poly (3, 4-ethylene dioxythiophene)(PEDOT)/gold nanoparticle (Au NP) composites, Front. Chem. 7 (2019) 234. https://doi.org/10.3389/fchem.2019.00234
[77] L. Ma, S. Jayachandran, Z. Li, Z. Song, W. Wang, X. Luo, Antifouling and conducting PEDOT derivative grafted with polyglycerol for highly sensitive electrochemical protein detection in complex biological media, J. Electroanal. Chem. 840 (2019) 272–278. https://doi.org/10.1016/j.jelechem.2019.04.002
[78] S. Faalnouri, D. Çimen, N. Bereli, A. Denizli, Surface Plasmon Resonance Nanosensors for Detecting Amoxicillin in Milk Samples with Amoxicillin Imprinted Poly (hydroxyethyl methacrylate-N-methacryloyl-(L)-glutamic acid), ChemistrySelect. 5 (2020) 4761–4769. https://doi.org/10.1002/slct.202000621
[79] R.S. Riaz, M. Elsherif, R. Moreddu, I. Rashid, M.U. Hassan, A.K. Yetisen, H. Butt, Anthocyanin-functionalized contact lens sensors for ocular pH monitoring, ACS Omega. 4 (2019) 21792–21798. https://doi.org/10.1021/acsomega.9b02638
[80] W.-C. Huang, Y.-C. Lo, C.-Y. Chu, H.-Y. Lai, Y.-Y. Chen, S.-Y. Chen, Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation, Biomaterials. 122 (2017) 141–153. https://doi.org/10.1016/j.biomaterials.2017.01.013
[81] B. Li, J. Wang, Q. Gui, H. Yang, Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery, Bioact. Mater. 5 (2020) 577–583. https://doi.org/10.1016/j.bioactmat.2020.04.013
[82] A.D. Holmkvist, J. Agorelius, M. Forni, U.J. Nilsson, C.E. Linsmeier, J. Schouenborg, Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice, J. Nanobiotechnology. 18 (2020) 1–12. https://doi.org/10.1186/s12951-020-0585-9
[83] C.-W. Kao, Y.-Y. Tseng, K.-S. Liu, Y.-W. Liu, J.-C. Chen, H.-L. He, Y.-C. Kau, S.-J. Liu, Anesthetics and human epidermal growth factor incorporated into anti-adhesive nanofibers provide sustained pain relief and promote healing of surgical wounds, Int. J. Nanomedicine. 14 (2019) 4007. https://doi.org/10.2147/IJN.S202402
[84] M.A. Plymale, D.L. Davenport, A. Dugan, A. Zachem, J.S. Roth, Ventral hernia repair with poly-4-hydroxybutyrate mesh, Surg. Endosc. 32 (2018) 1689–1694. https://doi.org/10.1007/s00464-017-5848-7
[85] P. Mehta, A.A. Al-Kinani, M.S. Arshad, N. Singh, S.M. van der Merwe, M.-W. Chang, R.G. Alany, Z. Ahmad, Engineering and development of chitosan-based Nanocoatings for Ocular Contact Lenses, J. Pharm. Sci. 108 (2019) 1540–1551. https://doi.org/10.1016/j.xphs.2018.11.036
[86] J. Hoyo, K. Ivanova, E. Guaus, T. Tzanov, Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort, J. Colloid Interface Sci. 543 (2019) 114–121. https://doi.org/10.1016/j.jcis.2019.02.043
[87] N.-P.-D. Tran, M.-C. Yang, Others, Synthesis and characterization of silicone contact lenses based on TRIS-DMA-NVP-HEMA hydrogels, Polymers. 11 (2019) 944. https://doi.org/10.3390/polym11060944
[88] F. Wang, J. Guo, K. Li, J. Sun, Y. Zeng, C. Ning, High strength polymer/silicon nitride composites for dental restorations, Dent. Mater. 35 (2019) 1254–1263. https://doi.org/10.1016/j.dental.2019.05.022
[89] M. Ranjbar, G. Dehghan Noudeh, M.-A. Hashemipour, I. Mohamadzadeh, A systematic study and effect of PLA/Al2O3 nanoscaffolds as dental resins: mechanochemical properties, Artif. Cells Nanomedicine Biotechnol. 47 (2019) 201–209. https://doi.org/10.1080/21691401.2018.1548472
[90] M. Ducret, A. Montembault, J. Josse, M. Pasdeloup, A. Celle, R. Benchrih, F. Mallein-Gerin, B. Alliot-Licht, L. David, J.-C. Farges, Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration, Dent. Mater. 35 (2019) 523–533. https://doi.org/10.1016/j.dental.2019.01.018
[91] A. Xing, Q. Sun, Y. Meng, Y. Zhang, X. Li, B. Han, A hydroxyl-containing hyperbranched polymer as a multi-purpose modifier for a dental epoxy, React. Funct. Polym. 149 (2020) 104505. https://doi.org/10.1016/j.reactfunctpolym.2020.104505
[92] W. Zhang, X. Zhou, Y. He, L. Xu, J. Xie, Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods, Biomed. Microdevices. 23 (2021) 1–16. https://doi.org/10.1007/s10544-020-00537-w
[93] O.M. Rotman, B. Kovarovic, W.-C. Chiu, M. Bianchi, G. Marom, M.J. Slepian, D. Bluestein, Novel polymeric valve for transcatheter aortic valve replacement applications: in vitro hemodynamic study, Ann. Biomed. Eng. 47 (2019) 113–125. https://doi.org/10.1007/s10439-018-02119-7
[94] G. Zhu, M.B. Ismail, M. Nakao, Q. Yuan, J.H. Yeo, Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement, Plos One. 14 (2019) e0210780. https://doi.org/10.1371/journal.pone.0210780
[95] C. Jenney, P. Millson, D.W. Grainger, R. Grubbs, P. Gunatillake, S.J. McCarthy, J. Runt, J. Beith, Assessment of a Siloxane Poly (urethane-urea) Elastomer Designed for Implantable Heart Valve Leaflets, Adv. NanoBiomed Res. 1 (2021) 2000032. https://doi.org/10.1002/anbr.202000032
[96] N. Tran, A. Le, M. Ho, N. Dang, H.H. Thi Thanh, L. Truong, D.P. Huynh, N.T. Hiep, Polyurethane/polycaprolactone membrane grafted with conjugated linoleic acid for artificial vascular graft application, Sci. Technol. Adv. Mater. 21 (2020) 56–66. https://doi.org/10.1080/14686996.2020.1718549
[97] C. Unterhofer, C. Wipplinger, M. Verius, W. Recheis, C. Thomé, M. Ortler, Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling, Neurol. Neurochir. Pol. 51 (2017) 214–220. https://doi.org/10.1016/j.pjnns.2017.02.007
[98] Y. Jang, J.-Y. Sim, J.-K. Park, W.-C. Kim, H.-Y. Kim, J.-H. Kim, Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts, J. Prosthet. Dent. 123 (2020) 135–142. https://doi.org/10.1016/j.prosdent.2018.11.004
[99] E. Fallahiarezoudar, M. Ahmadipourroudposht, A. Idris, N.M. Yusof, Optimization and development of Maghemite (γ-Fe2O3) filled poly-L-lactic acid (PLLA)/thermoplastic polyurethane (TPU) electrospun nanofibers using Taguchi orthogonal array for tissue engineering heart valve, Mater. Sci. Eng. C. 76 (2017) 616–627. https://doi.org/10.1016/j.msec.2017.03.120
[100] A.A. Shitole, P. Raut, P. Giram, P. Rade, A. Khandwekar, B. Garnaik, N. Sharma, Poly (vinylpyrrolidone)-iodine engineered poly (ε-caprolactone) nanofibers as potential wound dressing materials, Mater. Sci. Eng. C. 110 (2020) 110731. https://doi.org/10.1016/j.msec.2020.110731
[101] B. Kaczmarek, O. Mazur, O. Mi\lek, M. Michalska-Sionkowska, A.M. Osyczka, K. Kleszczyński, Development of tannic acid-enriched materials modified by poly (ethylene glycol) for potential applications as wound dressing, Prog. Biomater. 9 (2020) 115–123. https://doi.org/10.1007/s40204-020-00136-1
[102] A. Olad, M. Eslamzadeh, F. Katiraee, A. Mirmohseni, Evaluation of in vitro anti-fungal properties of allicin loaded ion cross-linked poly (AA-co-AAm)/PVA/Cloisite 15A Nanocomposite hydrogel films as wound dressing materials, J. Polym. Res. 27 (2020) 1–10. https://doi.org/10.1007/s10965-020-02072-x
[103] G. Tao, Y. Wang, R. Cai, H. Chang, K. Song, H. Zuo, P. Zhao, Q. Xia, H. He, Design and performance of sericin/poly (vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application, Mater. Sci. Eng. C. 101 (2019) 341–351. https://doi.org/10.1016/j.msec.2019.03.111
[104] Z. Di, Z. Shi, M.W. Ullah, S. Li, G. Yang, A transparent wound dressing based on bacterial cellulose whisker and poly (2-hydroxyethyl methacrylate), Int. J. Biol. Macromol. 105 (2017) 638–644. https://doi.org/10.1016/j.ijbiomac.2017.07.075
[105] S. Zhang, H. Li, M. Yuan, M. Yuan, H. Chen, Poly (lactic acid) blends with poly (trimethylene carbonate) as biodegradable medical adhesive material, Int. J. Mol. Sci. 18 (2017) 2041. https://doi.org/10.3390/ijms18102041
[106] W. Chen, R. Wang, T. Xu, X. Ma, Z. Yao, B.O. Chi, H. Xu, A mussel-inspired poly (γ-glutamic acid) tissue adhesive with high wet strength for wound closure, J. Mater. Chem. B. 5 (2017) 5668–5678. https://doi.org/10.1039/C7TB00813A
[107] F. Sun, Y. Bu, Y. Chen, F. Yang, J. Yu, D. Wu, An injectable and instant self-healing medical adhesive for wound sealing, ACS Appl. Mater. Interfaces. 12 (2020) 9132–9140. https://doi.org/10.1021/acsami.0c01022
[108] A. Assmann, A. Vegh, M. Ghasemi-Rad, S. Bagherifard, G. Cheng, E.S. Sani, G.U. Ruiz-Esparza, I. Noshadi, A.D. Lassaletta, S. Gangadharan, Others, A highly adhesive and naturally derived sealant, Biomaterials. 140 (2017) 115–127. https://doi.org/10.1016/j.biomaterials.2017.06.004
[109] Z. Zheng, S. Bian, Z. Li, Z. Zhang, Y. Liu, X. Zhai, H. Pan, X. Zhao, Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing, Carbohydr. Polym. 249 (2020) 116826. https://doi.org/10.1016/j.carbpol.2020.116826
[110] A. Gao, F. Liu, L. Xue, Preparation and evaluation of heparin-immobilized poly (lactic acid)(PLA) membrane for hemodialysis, J. Membr. Sci. 452 (2014) 390–399. https://doi.org/10.1016/j.memsci.2013.10.016
[111] L. Zhu, F. Liu, X. Yu, L. Xue, Poly (lactic acid) hemodialysis membranes with poly (lactic acid)-block-poly (2-hydroxyethyl methacrylate) copolymer as additive: preparation, characterization, and performance, ACS Appl. Mater. Interfaces. 7 (2015) 17748–17755. https://doi.org/10.1021/acsami.5b03951
[112] A. Mollahosseini, S. Argumeedi, A. Abdelrasoul, A. Shoker, A case study of poly (aryl ether sulfone) hemodialysis membrane interactions with human blood: Molecular dynamics simulation and experimental analyses, Comput. Methods Programs Biomed. 197 (2020) 105742. https://doi.org/10.1016/j.cmpb.2020.105742
[113] B. Ashrafi, M. Rashidipour, A. Marzban, S. Soroush, M. Azadpour, S. Delfani, P. Ramak, Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface, Carbohydr. Polym. 212 (2019) 142–149. https://doi.org/10.1016/j.carbpol.2019.02.018
[114] H. Qi, S. Heise, J. Zhou, K. Schuhladen, Y. Yang, N. Cui, R. Dong, S. Virtanen, Q. Chen, A.R. Boccaccini, Others, Electrophoretic deposition of bioadaptive drug delivery coatings on magnesium alloy for bone repair, ACS Appl. Mater. Interfaces. 11 (2019) 8625–8634. https://doi.org/10.1021/acsami.9b01227