Exploiting Reducing Ability of DMF For Assembled Gold Nanostructures

Exploiting Reducing Ability of DMF For Assembled Gold Nanostructures

Hitesh Rajput, Abhitosh Kedia, Dimple Shah, Neha Sharma

download PDF

Abstract. We explore stable assembly of gold NPs in single step process by introducing a simple chemical synthesis in which pH changed gold precursor is added to dimethylformamide solution at RT. The redox chemistry of N, N-dimethylformamide (DMF) has been effectively utilized in the formation of surfactant free, small chain metal NPs networks (plasmonic oligomers) via molecular dipolar coupling. Kinetic absorption / TEM images illustrate gold nanocrystals formation, their inter-particle coupling as a function of pH as well as with DMF-Water ratio. Sub-nano gap inter-particle coupling b/w spherical/anisotropic Au NPs is seen through arising of new LSPR hump in NIR region. 1-D organized gold nanocrystals are formed when pH modified metal precursor is added to refluxed (80 0C) DMF: Water mixture. The inter-particle coupling provides unique strategy can promote complex sub-wavelength optical waveguides and nanophotonic devices.

DMF, Gold Nanoparticles, Assembly, Interparticle Coupling

Published online 3/25/2022, 7 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Hitesh Rajput, Abhitosh Kedia, Dimple Shah, Neha Sharma, Exploiting Reducing Ability of DMF For Assembled Gold Nanostructures, Materials Research Proceedings, Vol. 22, pp 102-108, 2022

DOI: https://doi.org/10.21741/9781644901878-14

The article was published as article 14 of the book Functional Materials and Applied Physics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] Z. Y. Tang, N. A. Kotov, Adv. Mater. 2005, 17, 951. https://doi.org/10.1002/adma.200401593
[2] J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, B. J. Kooi, Appl. Phys. Lett. 2003, 83, 4137. https://doi.org/10.1063/1.1627936
[3] L. Nagle, D. Ryan, S. Cobbe, D. Fitzmaurice, Nano Lett. 2003, 3, 51. https://doi.org/10.1021/nl025769j
[4] B. V. Enüstün, J. Turkevich, J. Am. Chem. Soc. 1963, 85, 3317. https://doi.org/10.1021/ja00904a001
[5] J. H. Liao, Y. Zhang, W. Yu, L. N. Xu, C. W. Ge, J. H. Liu, N. Gu, Colloids Surf., A 2003, 223, 177. https://doi.org/10.1016/S0927-7757(03)00156-0
[6] J. Y. Chang, J. J. Chang, B. Lo, S. H. Tzing, Y. C. Ling, Chem. Phys. Lett. 2003, 379, 261. https://doi.org/10.1016/j.cplett.2003.08.047
[7] A. N. Shipway, M. Lahav, R. Gabai, I. Willner, Langmuir 2000, 16,8789. https://doi.org/10.1021/la000316k
[8] B. Nikoobakht, M. A. El-Sayed, Langmuir 2001, 17, 6368. https://doi.org/10.1021/la010530o
[9] C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 2002, 12, 1765. https://doi.org/10.1039/b200953f
[10] A. M. Jackson, J. W. Myerson, F. Stellacci, Nat. Mater. 2004, 3, 330. https://doi.org/10.1038/nmat1116
[11] M. A. R. Meier,M. Filali, J.-F. Gohy, U. S. Schubert, J. Mater. Chem. 2006, 16, 3001. https://doi.org/10.1039/b602548j
[12] J. Sharma, S. Mahima, B. A. Kakade, R. Pasricha, A. B. Mandale, K. Vijayamohanan, J. Phys. Chem. B 2004, 108, 13280. https://doi.org/10.1021/jp0482013
[13] K. Osakada, A. Taniguchi, E. Kubota, S. Dev, K. Tanaka, K. Kubota, T. Yamamoto, Chem. Mater. 1992, 4, 562. https://doi.org/10.1021/cm00021a014
[14] F. Ahmad, V.S. Baswani, Polyhedron 1984,3,977. https://doi.org/10.1016/S0277-5387(00)84655-0
[15] I. Pastoriza- Santos, L. M. Liz-Marza’n, Langmuir 1999, 15, 949. https://doi.org/10.1021/la980984u
[16] J.Y. Yu, S. Schreiner, L. Vaska, Inorg. Chim. Acta 1990, 170, 145. https://doi.org/10.1016/S0020-1693(00)80465-X
[17] R. T. Tom, A.S. Nair, N. Singh. M. Aslam, C. I. Nagendra, R. Philip, K. Vijayamohanan, T. Pradeep, Langmuir 2003, 19, 3439. https://doi.org/10.1021/la0266435
[18] I. Pastoriza- Santos, L. M. Liz-Marza’n, Langmuir 2002, 18, 2888. https://doi.org/10.1021/la015578g
[19] A. Sa’nchez- Iglesias, I. Pastoriza- Santos, J. Pe’rez-juste, B. Rodri ‘guez- Gonza ‘lez, F. J. Garci’a de Abajo, L.M. Liz- Marza’n, Adv. Mater. 2006, 18, 2529. https://doi.org/10.1002/adma.200600475
[20] P.S. Kumar, I. Pastoriza- Santos, B. Rodri ‘guez- Gonza ‘lez, F. J. Garci’a de Abajo, L.M. Liz- Marza’n, Nanotechnology 2008, 19, 015606(1-5). https://doi.org/10.1088/0957-4484/19/01/015606
[21] A.V. Gaikwad, P. Verschuren, S. Kinge, G. Rothenberg, E. Eiserz, Phys. Chem. Chem Phys. 2008, 10, 951. https://doi.org/10.1039/B715112H
[22] M. A. R. meier, M. Filali, J. -F. Gohy, U.S. Schubert, J Mater. Chem. 2006, 16, 3001. https://doi.org/10.1039/b602548j
[23] M. Kanehara, E. Kodzuka, T. Teranishi, J. Am. Chem. Soc. 2006, 128, 13084. https://doi.org/10.1021/ja064510q
[24] H. Y. Lee, N.H. Lim, J.A. Seo, S.H. Yuk, B.K. Kwak, G. Khang, H.B. Lee, S. H. Cho, J. Biomed. Mater. Res. Part B 2006, 79, 142. https://doi.org/10.1002/jbm.b.30524
[25] I. Pastoriza- Santos, C. Serra- Rodr ‘iguez, L.M. Liz- Marza’an, J. Colloid interface Sci. 2000, 221, 234. https://doi.org/10.1006/jcis.1999.6590
[26] I. Pastoriza- Santos, D. S. Koktysh, A. Mamedow, M. Giersig, N.A. Kotov L. M. Liz-Marza’n, Langmuir 2000, 16, 2731. https://doi.org/10.1021/la991212g
[27] D. S. Koktysh, X. Liang, B. _G. Yun, I. Pastoriza- Santos, R. L. Matts, M. Giersig, C. Serra- Rodr ‘iguez , L. M. Liz-Marza’n, Langmuir, N.A. Kotov, Adv. Funct. Mater. 2002, 12, 255. https://doi.org/10.1002/1616-3028(20020418)12:4<255::AID-ADFM255>3.0.CO;2-1
[28] A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, R. Philip, Mater. Sci. Eng. B 2005, 117, 173. https://doi.org/10.1016/j.mseb.2004.11.010
[29] J. Liu, W. Ong, A. E. Kaifer, Langmuir 2002, 18, 5981. https://doi.org/10.1021/la025956x