Effect of Copper Phthalocyanine Interfacial Layer on the Performance of Mixed Halide Perovskite Solar Cells

Effect of Copper Phthalocyanine Interfacial Layer on the Performance of Mixed Halide Perovskite Solar Cells

K.L. Usha Kumary, M. Pratheek, T.A. Shahul Hameed and P. Predeep

download PDF

Abstract. Organo metallic halide perovskite solar cells (PSCs) have attracted much attention due to the enhanced photovoltaic performance and wide absorption in the visible region. In this work, a perovskite solar cell device with mixed halide perovskite CH3NH3PbI3-xClx as the active layer was fabricated in the normal device architecture and investigated. The effect of device performance was compared by introducing copper phthalocyanine (CuPc) as a hole transport layer (HTL). It is seen that device with a transport layer exhibits a better performance and power conversion efficiency (PCE) than the device without an HTL. The carrier mobility was determined using the space charge limited current (SCLC) method and found to be 0.0013cm2/Vs.

Keywords
Hole Transport Layer, Mobility, Perovskite Solar Cell

Published online 3/25/2022, 9 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: K.L. Usha Kumary, M. Pratheek, T.A. Shahul Hameed and P. Predeep, Effect of Copper Phthalocyanine Interfacial Layer on the Performance of Mixed Halide Perovskite Solar Cells, Materials Research Proceedings, Vol. 22, pp 80-88, 2022

DOI: https://doi.org/10.21741/9781644901878-11

The article was published as article 11 of the book Functional Materials and Applied Physics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050-6051. https://doi.org/10.1021/ja809598r
[2] H. J. Snaith, Perovskites : The Emergence of a New Era for Low-Cost , High-Efficiency Solar Cells, J. Phys. Chem. Lett. 4 (2013) 3623–3630. https://doi.org/10.1021/jz4020162
[3] H. Kim, C. Lee, J. Im, K. Lee, T. Moehl, A. M Marchoro, S. Moon, R. H. Baker, J. Yum, J. E. Maser, M. Gratzel, N. Park, Lead iodide perovskite sensitised All-Solid-State Submicron Thin Film Mesoscopic solar cell with fficiency exceeding 9%, Sci. Rep. 2 (2012) 591-597. https://doi.org/10.1038/srep00591
[4] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient Hybrid Solar Cells based on Meso -Superstructured Organometal Halide Perovskites, Science 338 (2012) 643–648. https://doi.org/10.1126/science.1228604
[5] D. S. Philips, W. Warmuth, Fraunhofer ISE: Photovoltaics Report, 2019.
[6] Z. Wu, T. Song, B. Sun, Carbon-Based Materiala used for Perovskite Solar cell, ChenNanoMat 3 (2017) 75-88. https://doi.org/10.1002/cnma.201600312
[7] M. A. Green, A. Ho-baillie, H. J. Snaith, The emergence of perovskite solar cells, 8 (2014) 506–514. https://doi.org/10.1038/nphoton.2014.134
[8] A. Gheno, S. Vedraine, B. Ratier, J. Bouclé, π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells, Metals 6 (2016) 21–42. https://doi.org/10.3390/met6010021
[9] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science 350 (2015) 944–949. https://doi.org/10.1126/science.aad1015
[10] Z. Yi, H. Ladi, X. Shai, H. Li, Y. Shen, M. Wang, Will organic – inorganic hybrid halide lead perovskites be eliminated from optoelectronic Applications?, Nanoscale Adv. 1 (2019) 1276–1289. https://doi.org/10.1039/C8NA00416A
[11] M. Yokota, K. Fujii, M. Ishigo, K. Sasaki, H. Kato, N. Doki, Enabling Solution Growth of Insoluble Organic Materials in Common Solvents, Adv. Chem. Eng. Sci. 6 (2016) 82-86. https://doi.org/10.4236/aces.2016.62010
[12] A. Baron, Synthesis and Characterization of methyl ammonium lead tri halide Perovskite Compounds and their Applications in Photonic Devices, Ph. D, University of Basrah, 2019.
[13] X. Jiang, Z. Yu, J. Lai, Y. Zhang, N. Lei, D. Wang, L. Sun, Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material, Sci. China 60 (2017) 423–430. https://doi.org/10.1007/s11426-016-0393-5
[14] J. Zaumseil, H. Sirringhaus, Electron and Ambipolar Transport in Organic Field-Effect Transistors, Chem. Rev. 107 (2007) 1296–1323. https://doi.org/10.1021/cr0501543
[15] C. V. Kumar, D. Georgia Sfyri Raptis, E. Stathatos, P. Lianos, Perovskite Solar Cell with Low cost Cu-Phtahlocyanne as Hole Transporting Layer, RSC Adv. 5 (2015) 3786–3791. https://doi.org/10.1039/C4RA14321C
[16] S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, A. Yuvapragasam, V. M. Ramakrishnan, S. E Palanisamy, S. Sundaram, D. Velayuthapillai, A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application, Arab. J. Chem. 13 (2020) 2526-2557. https://doi.org/10.1016/j.arabjc.2018.06.006
[17] A. A. M. Farag, Optical absorption studies of copper phthalocyanine thin films, Opt. Laser Technol. 39 (2007) 728–732. https://doi.org/10.1016/j.optlastec.2006.03.011
[18] Z. U. Islam, M. Tahir, W.A. Syed, F. Aziz, F. Wahab, S. M. Said, M. R. Sarker, S. H. Md Ali, M. F. M Sabri, Fabrication and photovoltaic properties of organic solar cell based on zinc phthalocyanine, Energies 13 (2020) 962-975. https://doi.org/10.3390/en13040962
[19] K. L. Usha Kumary, M. Pratheek, T. A. Shahul Hameed, P. Predeep, Measurement of hole mobility in P3HT based photovoltaic cell using space charge limited current method, AIP Conf. Proc. 2162 (2019) 20142–20147. https://doi.org/10.1063/1.5130352
[20] J. Wang, Z. Wang, M. Li, C. Zhang, L. Jiang, K. Hu, Q. Ye, L. Liao, Doped Copper Phthalocyanine via an Aqueous Solution Process for Normal and Inverted Perovskite Solar Cells, Adv. Energy Mater. 8 (2018) 1701688- 1701696. https://doi.org/10.1002/aenm.201701688