Innovations in Natural Fibre Reinforced Composites for Improved Performance

$30.00

Innovations in Natural Fibre Reinforced Composites for Improved Performance

N. Gokarneshan, PG Anandhakrishnan, R. Sasirekha, Obulam Vidya Sagar, D. Haritha, and K.M. Pachiyappan

Natural fibre reinforced composites have become the new choice owing to their versatility in varied end use applications, economical and eco considerations as well. Efforts have been directed towards replacing them with their synthetic counter parts which prove to be more expensive. Mechanical and tribological characteristics of natural fibre reinforced composites have gained focus. Different types of natural fibre composites have been chemically treated to improve certain performance aspects. Also, properties related to energy absorption and water absorption have been evaluated. Studies have been carried out on fibres that include coconut sheath, flax seed fibre, jute, and areca sheath fibre. The ballistic performance, abrasive behaviour, ecological aspects, etc. have been given due consideration.

Keywords
Reinforced Composites, Cocos Nucifera, Jute, Properties, Applications, Fiber

Published online 4/10/2022, 40 pages

Citation: N. Gokarneshan, PG Anandhakrishnan, R. Sasirekha, Obulam Vidya Sagar, D. Haritha, and K.M. Pachiyappan, Innovations in Natural Fibre Reinforced Composites for Improved Performance, Materials Research Foundations, Vol. 122, pp 37-76, 2022

DOI: https://doi.org/10.21741/9781644901854-2

Part of the book on Sustainable Natural Fiber Composites

References
[1] A.R. Hani, A. Roslan, J. Mariatti & M. Maziah. Body armor technology: a review of materials, construction techniques and enhancement of ballistic energy absorption. Paper presented at the Advanced Materials Research (2012). https://doi.org/10.4028/www.scientific.net/AMR.488-489.806
[2] F. de Oliveira Braga, L.T. Bolzan, F.S. da Luz, P.H.L.M. Lopes, E.P Jr. Lima, & S.N. Monteiro. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates. Journal of Materials Research and Technology, (2000)6(4), 417-422. https://doi.org/10.1016/j.jmrt.2017.08.001
[3] L.A. Rohen, F.M. Margem, S.N. Monteiro, C.M.F. Vieira, B. Madeira de Araujo, & E.S. Lima. Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multi-layered armor. Materials Research, (2015)18(Suppl2), 55-62. doi:10.1590/1516-1439.346314. https://doi.org/10.1590/1516-1439.346314
[4] I.K. Yilmazcoban, & S. Doner. Ballistic protection evaluation of sequencing the composite material sandwich panels for the reliable combination of armor layers. Acta Physica Polonica A, (2016)130(1), 343-346. https://doi.org/10.12693/APhysPolA.130.342
[5] H.G.M. Edwards, D.W. Farwell and D. Webster. FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part A: Mol Biomol Spectrosc 1997; 53: 2383-2392. https://doi.org/10.1016/S1386-1425(97)00178-9
[6] K. Oksman, M. Skrifvars and J.F. Selin. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol (2003) 63: 1317-1324. https://doi.org/10.1016/S0266-3538(03)00103-9
[7] S. Goutianos, T. Peijs, B. Nystrom. Development of flax fibre based textile reinforcements for composite applications. Appl Compos Mater (2006)13: 199-215. https://doi.org/10.1007/s10443-006-9010-2
[8] A. Kulma, K. Skorkowska-Telichowska, K. Kostyn. New flax producing bioplastic fibers for medical purposes. Industrial Crops Product (2015) 68: 80-89. https://doi.org/10.1016/j.indcrop.2014.09.013
[9] B.F. Yousif, N. Umar & K.J. Wong, Materials Design, 31 (2010) 4514. https://doi.org/10.1016/j.matdes.2010.04.008
[10] B.F. Yousif & N.S,M El-Tayeb, Surface Rev Letters, 14(6) (2007) 1095. https://doi.org/10.1142/S0218625X07010561
[11] J.A. Khan, M.A. Khan & R. Islam. Mechanical, thermal and degradation properties of jute fabric-reinforced polypropylene composites: Effect of potassium permanganate as oxidising agent. Polymer Composites, 34(5) (2013), 671-680. https://doi.org/10.1002/pc.22470
[12] A.K. Mohanty, M.A. Khan, & G. Hinrichsen. Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Composites Science and Technology, 60(7) (2000), 1115-1124. https://doi.org/10.1016/S0266-3538(00)00012-9
[13] H.U. Zaman, M.A. Khan, & R.A. Khan.. Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation. Polymer Composites, 33(7) (2012), 1077-1084. https://doi.org/10.1002/pc.22184
[14] X. Li, G.L. Tabil, & S. Panigrahi. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1) (2007), 25-33. https://doi.org/10.1007/s10924-006-0042-3
[15] L.Y. Mwaikambo & M.P. Ansell.. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12) (2002), 2222-2234. https://doi.org/10.1002/app.10460
[16] D. Ray & B.K. Sarkar. Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science, 80(7) (2001), 1013-1020. https://doi.org/10.1002/app.1184
[17] C.A. Hill, H.P.S. Khalil & M.D. Hale. A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products, 8(1) (1998), 53-63. https://doi.org/10.1016/S0926-6690(97)10012-7
[18] M.J. Jhon, B. Francis, K.T. Varughese, & S. Thomas. Effect of chemical modification on properties of hybrid fibre biocomposites. Composites Part A: Applied Science and Engineering, 39(2008), 352-363. https://doi.org/10.1016/j.compositesa.2007.10.002
[19] P. Liu, & M.S. Strano. Toward ambient armor: Can new materials change longstanding concepts of projectile protection? Advanced Functional Materials, 26(6) (2016), 943-954. https://doi.org/10.1002/adfm.201503915
[20] P. Wambua, J. Ivens, & I. Verpoest. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9) (2003), 1259-1264. https://doi.org/10.1016/S0266-3538(03)00096-4
[21] Z. Benzait, & L. Trabzon. A review of recent research on materials used in polymer-matrix composites for body armor application. Journal of Composite Materials, 52(2018), 3241-3263. https://doi.org/10.1177/0021998318764002
[22] Y. Zhou, J. Hou, X. Gong, & D. Yang. Hybrid panels from woven KevlarVR and DyneemaVR fabrics against ballistic impact with wearing flexibility. The Journal of the Textile Institute, 1(2017), 8. https://doi.org/10.1080/00405000.2017.1398122
[23] R.B.D. Jr. Cruz, P. Lima, M. Edio, S. Neves, & L.H.L. Louro. Giant bamboo fiber reinforced epoxy composite in multi-layered ballistic armor. Materials Research, 18(2015) (Suppl2), 70-75. https://doi.org/10.1590/1516-1439.347514
[24] F.S.D. Jr. Luz, P.E. Lima, P., L.H.L. Louro & S.N. Monteiro. Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric. Materials Research, 18(2015) (Suppl2), 170-177. https://doi.org/10.1590/1516-1439.358914
[25] S.N. Monteiro, L.H.L. Louro, W. Trindade, C.N. Elias, C.L. Ferreira, E. de Sousa Lima, E.P. Lima. Natural curaua fiber-reinforced composites in multi layered ballistic armor. Metallurgical and Materials Transactions A, 46(10) (2015), 4567-4577. https://doi.org/10.1007/s11661-015-3032-z
[26] S.N. Monteiro, V.S. Candido, F.O. Braga, L.T. Bolzan, R.P. Weber & J.W. Drelich, Sugarcane bagasse waste in composites for multilayered armor. European Polymer Journal, 78 (2016), 173-185. https://doi.org/10.1016/j.eurpolymj.2016.03.031
[27] S.N. Monteiro, T.L.Milanezi, L.H.L. Louro, E. P., Jr. Lima, F. O. Braga, , A.V. Gomes, & J.W. Drelich,. Novel ballistic ramie fabric composite competing with KevlarTM fabric in multi layered armor. Materials & Design, 96(2016), 263-269. https://doi.org/10.1016/j.matdes.2016.02.024
[28] L.F.C, Nascimento, L.H.L. Louro, S.N. Monteiro, A.V. Gomes, E.D. Jr. Lima, , & R. L. S. B. Marc¸al. Ballistic performance in multilayer armor with epoxy composite reinforced with Malva fibers. Paper presented at the Proceedings of the 3rd Pan American Materials Congress. Pp. 331-338. https://doi.org/10.1007/978-3-319-52132-9_33
[29] S. Jambari, M. Y. Yahya, M. R. Abdullah, & M. Jawaid, Woven Kenaf/Kevlar Hybrid Yarn as potential fiber reinforced for anti-ballistic composite material. Fibers and Polymers, 18(3) (2017), 563-568. https://doi.org/10.1007/s12221-017-6950-0
[30] Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016c). Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers and Polymers, 17(2), 275-281. https://doi.org/10.1007/s12221-016-5678-6
[31] M. S..Risby, S. V. Wong, A. M. S. Hamouda, A. R.. Khairul, & M. Elsadig, Ballistic performance of coconut shell powder/twaron fabric against non-armour piercing projectiles. Defence Science Journal, 58(2) (2008), 248. https://doi.org/10.14429/dsj.58.1645
[32] Z.S. Radif, A. Aidy & K.Abdan, Development of a green combat armour from rame-Kevlar-polyester composite. Pertanika Journal of Science and Technology, 19(2) (2011), 339-348.
[33] I. M.De Rosa, H. N.Dhakal,, C.Santulli, F.Sarasini, & Z. Y. Zhang, Post-impact static and cyclic flexural characterisation of hemp fibre reinforced laminates. Composites Part B: Engineering, 43(3) (2012), 1382-1396. https://doi.org/10.1016/j.compositesb.2011.09.012
[34] X. Chen, F. Zhu, & G. Wells. An analytical model for ballistic impact on textile based body armour. Composites Part B: Engineering, 45(1) (2013), 1508-1514. https://doi.org/10.1016/j.compositesb.2012.08.005
[35] R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, & E. S Zainudin,. Effect of fibre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application. Defence Technology, 12(1) (2016a), 52-58. https://doi.org/10.1016/j.dt.2015.08.005
[36] R.Yahaya , S. M. Sapuan, M. Jawaid, Z. Leman, & E. S. Zainudin, Effect of moisture absorption on mechanical properties of natural fibre hybrid composite. Paper presented at the Proceedings of the 13th International Conference on Environment, Ecosystems and Development (EED’15) (2016b).
[37] Yahaya, , Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016c). Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers and Polymers, 17(2), 275-281. https://doi.org/10.1007/s12221-016-5678-6
[38] R.Yahaya, Sapuan, Jawaid, M., Leman, Z., & Zainudin, E. S. (2016d). Measurement of ballistic impact properties of woven kenaf-aramid hybrid composites. Measurement, 77, 335-343. https://doi.org/10.1016/j.measurement.2015.09.016
[39] Jambari, S., S. M.Yahya, M. R. Abdullah, & M. Jawaid, Woven Kenaf/Kevlar Hybrid Yarn as potential fiber reinforced for anti-ballistic composite material. Fibers and Polymers, 18(3) (2017), 563-568. https://doi.org/10.1007/s12221-017-6950-0
[40] A. K. Bledzki, S. Reihmane, & J. Gassan,. Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science, 59(8) (1996), 1329-1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.3.CO;2-5
[41] D.Zhang, Y.Sun, L.Chen, S. Zhang, & N.Pan. Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate. Materials & Design (1980-2015), 54(2014), 315-322. https://doi.org/10.1016/j.matdes.2013.08.074
[42] P.V. Cavallaro.. Soft body armor: An overview of materials, manufacturing, testing, and ballistic impact dynamics: Naval Undersea Warfare Center Div Newport Ri. (2011). https://doi.org/10.21236/ADA549097
[43] J. Naveen, M. Jawaid, E. S. Zainudin, Mohamed T. H. Sultan & R. Yahaya: Evaluation of ballistic performance of hybrid Kevlar®/Cocosnucifera sheath reinforced epoxy composites, The Journal of The Textile Institute (2018). https://doi.org/10.1080/00405000.2018.1548801
[44] Singh KK, Mridula D, Rehal J, et al. Flaxseed: A potential source of food, feed and fiber. Crit Rev Food Sci 2011; 51: 210-222. https://doi.org/10.1080/10408390903537241
[45] K. Heller, Q.C. Sheng, F. Guan. A comparative study between Europe and China in crop management of two types of flax: Linseed and fibre flax. Industrial Crops Product 2015; 68: 24-31. https://doi.org/10.1016/j.indcrop.2014.07.010
[46] FAOSTAT. FAOSTAT for world linseed production 1994-2016: Food and Agriculture Organization of the United Nations, http://www.fao.org/faostat/en/?#data/QC/visualize (2018).
[47] D.T.E. Ehrensing. ”FLAX” February 2008. Department of Crop and Soil Science, Oregon State University, https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/em8952.pdf (2008).
[48] K. Richardson. Flaxpage (2007). NDSU Libraries, Fargo, ND 58105, http://www.ag.ndsu.edu/agnic/flax/index.html
[49] A. Ulrich, R. Marleau, Soils and Crops Workshop Using agronomic practices to increase the per hectare yield of flax. In: 91st PAPTAC annual meeting; 17 February 2005. https://harvest.usask.ca/handle/10388/9472.
[50] W.S. Anthony. Separation of fiber from seed flax straw. Appl Eng Agri 2002; 18: 227-233. https://doi.org/10.13031/2013.7788
[51] W.S. Anthony. New technology to separate fiber and shive from seed flax straw. In: ASAE Annual International Meeting, paper no. 056060. St. Joseph, MI:American Society of Agricultural and Biological Engineers.(2005). www.asabe.org. https://doi.org/10.13031/2013.19565
[52] J.A. Foulk, D.E. Akin and R.B. Dodd. New low cost flax fibers for composites. SAE Technical Paper 2000-01-1133, (2000). https://doi.org/10.4271/2000-01-1133
[53] D.E. Akin, R.B. Dodd, W. Perkins. Spray enzymatic retting: A new method for processing flax fibers. Textile Res J 2000; 70: 486-494. https://doi.org/10.1177/004051750007000604
[54] I. Ansari, G. East and D. Johnson. Structure-property relationships in natural cellulosic fibres. Part I: Characterisation. J Textile Inst .90(1999): 469-480. https://doi.org/10.1080/00405000.1999.10750046
[55] K. Wong, X. Tao, C. Yuen. Effect of plasma and subsequent enzymatic treatments on linen fabrics. Coloration Technol. 116(2000): 208-214. https://doi.org/10.1111/j.1478-4408.2000.tb00040.x
[56] C. Wang. Exploitation on plant fiber reinforced thermoplastic composite-bamboo fiber and the properties of the composites. Dissertation, School of Textiles, Tianjin Polytechnic University, Tianjin, China. (2006).
[57] D. Ray, B.K. Sarkar, A. Rana. Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24(2001): 129-135. https://doi.org/10.1007/BF02710089
[58] M. Baiardo, G. Frisoni, M. Scandola. Surface chemical modification of natural cellulose fibers. J Appl Polym Sci. 83(2002): 38-45. https://doi.org/10.1002/app.2229
[59] A.M.M. Edeerozey, H.M. Akil, A.B. Azhar. Chemical modification of kenaf fibers. Mater Lett. 61(2007): 2023-2025. https://doi.org/10.1016/j.matlet.2006.08.006
[60] P. Maijala, M. Makinen, S. Galkin. Enzymatic modification of flaxseed fibers. J Agri Food Chem. 60(2012): 10903-10909. https://doi.org/10.1021/jf303965k
[61] P.R. Lamb and R.J. Denning. Flax-Cottonised fibre from linseed stalks: a report for the Rural Industries Research and Development Corporation. Report no. RIRDC, (2004). Australia: Kingston, Act.
[62] B.C. Suddell. Natural fibre composites in automotive applications in natural fibres in biopolymers & their biocomposites. CRC Press. ( 2005). https://doi.org/10.1201/9780203508206.ch7
[63] B. Suddel. Industrial fibres: recent and current developments. In: Proceeding of the symposium of natural fibres. Rome, Italy: Food and Agriculture Organization (FAO) and Common Fund for Commodities (CFC). 20(2008): 71-82
[64] N. Abilash and M. Sivapragash. Environmental benefits of eco-friendly natural fiber reinforced polymeric composite materials. IJAIEM. 2(2013): 53-59.
[65] L. Chen, F. Wu, Y. Li. Robust and elastic superhydrophobic breathable fibrous membrane with in situ grown hierarchical structures. J Membrane Sci. 547(2018): 93-98. https://doi.org/10.1016/j.memsci.2017.10.023
[66] L. Chen, Z. Hu, Z. Wu. POSS-bound ZnO nanowires as interphase for enhancing interfacial strength and hydrothermal aging resistance of PBO fiber/epoxy resin composites. Compos Part A: Appl Sci Manuf. 96(2017): 1-8. https://doi.org/10.1016/j.compositesa.2017.02.013
[67] A.N. Netravali and S. Chabba. Composites get greener. Mater Today. 6(2003): 22-29. https://doi.org/10.1016/S1369-7021(03)00427-9
[68] A. Mohanty, M. Misra and G. Hinrichsen. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng. 276(2000): 1-24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
[69] M.K. Hossain, M.R. Karim, M.R. Chowdhury. Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Indus Crops Product. 58(2014): 78-90. https://doi.org/10.1016/j.indcrop.2014.04.002
[70] J.A. Foulk, D.E. Akin, R.B. Dodd. Flax fiber: potential for a new crop in the Southeast. Trends in new crops and new uses. Alexandria, VA: ASHS Press, 2002: 361-370.
[71] N. Zafeiropoulos, D. Williams, C. Baillie.. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A: Appl Sci Manuf. 33(2003): 1083-1093. https://doi.org/10.1016/S1359-835X(02)00082-9
[72] Gassan J. A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos Part A: Appl Sci Manuf . 33(2002): 369-374. https://doi.org/10.1016/S1359-835X(01)00116-6
[73] S.V. Joshi, L. Drzal, A. Mohanty. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A: Appl Sci Manuf. 35(2004): 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
[74] S. Sam-Brew and G.D. Smith. Flax and Hemp fiber-reinforced particleboard. Industrial Crops Product. 77(2015): 940-948. https://doi.org/10.1016/j.indcrop.2015.09.079
[75] L. Chen,. Si L, F. Wu. Electrical and mechanical self-healing membrane using gold nanoparticles as localized ”nano-heaters”. J Mater Chem C. 4(2016): 10018-10025. https://doi.org/10.1039/C6TC03699F
[76] L. Liu, J Yu, L Cheng. Biodegradability of poly (butylene succinate)(PBS) composite reinforced with jute fibre. Polym Degrad Stabil. 94(2009): 90-94. https://doi.org/10.1016/j.polymdegradstab.2008.10.013
[77] G. Dorez, A. Taguet, L. Ferry. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stabil. 98(2013): 87-95. https://doi.org/10.1016/j.polymdegradstab.2012.10.026
[78] Lee SH and Wang SQ. Biodegradable polymers/bamboo fiber bio composite with bio based coupling agent. Compos Part A-Appl Sci. 37(2006): 80-91. https://doi.org/10.1016/j.compositesa.2005.04.015
[79] W.A. Sayed, X. Fujun, Z. Yinnan and Q. Yiping. Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites, Journal of industrial textiles, 50(1)(2020): 98. https://doi.org/10.1177/1528083718821876
[80] S. Ahmed and A.C. Ulven. Dynamic in-situ observation on the failure mechanism of flax fiber through scanning electron microscopy. Fibers. 6(2018): 17. https://doi.org/10.3390/fib6010017
[81] A.B.D. Thuault, I. Hervas and M. Gomina. Investigation of the internal structure of flax fibre cell walls by transmission electron microscopy. Cellulose. 22(2015): 3521-3530. https://doi.org/10.1007/s10570-015-0744-6
[82] R.A. Shanks, A. Hodzic and D. Ridderhof. Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci. 99(2006): 2305-2313. https://doi.org/10.1002/app.22531
[83] A. Orue, A. Jauregi, U. Unsuain. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Compos A Appl Sci. 84(2016): 186-195. https://doi.org/10.1016/j.compositesa.2016.01.021
[85] R. Sepe, F. Bollino, L. Boccarusso. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos B Eng. 133(2018): 210-217. https://doi.org/10.1016/j.compositesb.2017.09.030
[86] X. Liu and L. Cheng . Influence of plasma treatment on properties of ramie fiber and the reinforced composites. J dhes Sci Technol. 31(2016): 1723-1734. https://doi.org/10.1080/01694243.2016.1275095
[87] M. Cai, H. Takagi, A.N. Nakagaito. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind Crop Prod. 65(2015).: 27-35. https://doi.org/10.1016/j.indcrop.2014.11.048
[88] Z. Zhang, Y. Li and C. Chen. Synergic effects of cellulose nanocrystals and alkali on the mechanical properties of sisal fibers and their bonding properties with epoxy. Compos A Appl Sci. 101(2017): 480-489. https://doi.org/10.1016/j.compositesa.2017.06.025
[89] M. Cai, H. Takagi, A.N. Nakagaito. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos A Appl Sci. 90(2016): 589-597. https://doi.org/10.1016/j.compositesa.2016.08.025
[90] S.R. Ferreira, F.D.A Silva, P.R.L. Lima. Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems. Constr Build Mater.101(2015): 730-740. https://doi.org/10.1016/j.conbuildmat.2015.10.120
[91] L. Yan, N. Chouw, L. Huang. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr Build Mater. 112(2016): 168-182. https://doi.org/10.1016/j.conbuildmat.2016.02.182
[92] E. Sinha and S.K. Rout. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull Mater Sci.32(2009): 65-76. https://doi.org/10.1007/s12034-009-0010-3
[93] L. Xuan, J.H. Sen, H.C. Yi and Y.C. Hai. Improvement on the interfacial compatibility of jute fiber-reinforced polypropylene composites by different surface treatments, 49(7)(2020)906. https://doi.org/10.1177/1528083718801366
[94] M. Mariano, R. Cercena and V. Soldi.. Thermal characterization of cellulose nano crystals isolated from sisal fibers using acid hydrolysis. Ind Crop Prod. 94(2016): 454-462. https://doi.org/10.1016/j.indcrop.2016.09.011
[95] H. Wang, G. Xian and H. Li Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Compos A: Appl Sci Manuf..76(2015): 172-180. https://doi.org/10.1016/j.compositesa.2015.05.027
[96] K. Roy, S.C. Debnath, A. Das. Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polym Test. 67(2018): 487-493. https://doi.org/10.1016/j.polymertesting.2018.03.032
[97] R. Basak, P.L. Choudhury and K.M. Pandey. Effect of temperature variation on surface treatment of short jute fiber-reinforced epoxy composites. Mater Today Proc. 5(2015):1271-1277. https://doi.org/10.1016/j.matpr.2017.11.211
[98] S.P. Kundu, S. Chakraborty, S.B. Majumder. Effectiveness of the mild alkali and dilute polymer modification in controlling the durability of jute fibre in alkaline cement medium. Constr Build Mater.174(2018): 330-342. https://doi.org/10.1016/j.conbuildmat.2018.04.134
[99] J.W. Dormanns, J. Schuermann, J. Mu¨ ssigl. Solvent infusion processing of all cellulose composite laminates using an aqueous NaOH/urea solvent system. Compos A: Appl Sci Manuf. 82(2015): 130-140. https://doi.org/10.1016/j.compositesa.2015.12.002
[100] Y. Li, C. Chen, J. Xu. Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites. J Mater Sci. 50(2015): 1117-1128. https://doi.org/10.1007/s10853-014-8668-3
[101] H. Aireddy, J Metallurgy Mater Sci, 53 (2011) 139.
[102] S.A.R. Hashmi, U.K. Dwivedi U K & Chand N, Wear, 262 (2007) 1426. https://doi.org/10.1016/j.wear.2007.01.014
[103] N. Singh, B.F. Yousif & D. Rilling, Tribology Transactions, 54(5) (2011) 736. https://doi.org/10.1080/10402004.2011.597544
[104] A.K. Rana, B.C. Mitra & A.N. Banerjee, J Appl Polym Sci, 71 (1999) 531. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<531::AID-APP2>3.0.CO;2-I
[105] J. Tong, Y. Ma, D. Chen, J. Sun & L. Ren, Wear, 259 (2005) 37. https://doi.org/10.1016/j.wear.2005.03.031
[106] N. Chand & U.K. Dwivedi, J Mat Processing Technol, 183 (2007) 155. https://doi.org/10.1016/j.jmatprotec.2006.09.036
[107] N.S.M El-Tayeb, Wear, 266 (2009) 220. https://doi.org/10.1016/j.wear.2008.06.018
[108] A.V. Prasad, K.B. Rao, K.M. Rao, K. Ramanaiah & S.P.K. Gudapati, Int J Polym Anal Character, 20 (2015) 541. https://doi.org/10.1080/1023666X.2015.1053335
[109] S. Chikkol, B. Bennehalli, M.G. Kenchappa & R. Patel, Bio Res, 3 (2010) 1846.
[110] N.K.S. Gowda, S. Anandan, D.T. Pal, N.C. Vallesha, S. Verma & K.T. Sampath, Indian Dairyman, 64 (2012) 58.
[111] N.H. Padmaraj, M. VijayKini, P.B. Raghuvir & S.B. Satish, Procedia Engg, 64 (2013) 966. https://doi.org/10.1016/j.proeng.2013.09.173
[112] K.M. Sunil, K.H.R. Shiva, S.G. Gopalakrishna & K.S. Rai, Int J Mech Eng Tech, 5 (2014) 55.
[113] K.M. Sunil, S.G. Gopalakrishna, M. Sujay & K.H.R. Shiva, Int J Adv Res Sci Eng, 4 (2015) 1647.
[114] M.R. Chethan , S.G. Gopala Krishna, R. Chennakeshava & M. Manjunath, Int J Adv Engg Tech Management Appl Sci, 3 (2016) 412.
[115] A. Shalwan & B.F. Yousif , Materials Design, 48 (2013) 14. https://doi.org/10.1016/j.matdes.2012.07.014
[116] P.A.V. Ratna, A.M. Durga A M, Rao K M, Ramanaiah K & Reddy B V, Proceedings, 18th International Conference on Advance Trends in Engineering Materials and their Applications (AES-ATEMA, Canada). (2014): 129.
[117] A.K. Mohanty, M. Misra, & L.T. Drzal, Surface modifications of natural fibers and performance of the resulting bio composites: An overview. Composite Interfaces, 8(5)(2001): 313-343. https://doi.org/10.1163/156855401753255422
[118] X.Y. Liu & G.C. Dai. Surface modification and micro mechanical properties of jute fibre mat reinforced polypropylene composites. Express Polymer Letters, 1(5)(2007): 299-307. https://doi.org/10.3144/expresspolymlett.2007.43
[119] K. Bledzki, & S.J. Gassan. Composites reinforced with cellulose based fibers. Progress in Polymer Science, 24(2)(1999): 221-274. https://doi.org/10.1016/S0079-6700(98)00018-5
[120] A. Rawal & M.M.A. Sayeed. Tailoring the structure and properties of jute blended nonwoven geotextiles via alkali treatments of jute fibres. Materials and Design, 53(2014): 701-705. https://doi.org/10.1016/j.matdes.2013.07.073
[121] S.J. Gassan, & K. Bledzki, Alkali treatment of jute fibres: Relationship between structures and mechanical properties. Journal of Applied Polymer Science, 71(4)(1999): 623-629. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<623::AID-APP14>3.0.CO;2-K
[122] D.S. Varma, M. Varma, & I.K. Varma, Coir fibres Part 1: Effect of physical and chemical treatments on properties. Textile Research Journal, 54(12)(1984), 827-832. https://doi.org/10.1177/004051758405401206
[123] P. Saha,, S. Manna, S. Roy Chowdhury, R. Sen, D. Roy, & B. Adhikari, Enhancement of tensile strength of lignocellulosic jute fibres by alkali-steam treatment. Bioresource Technology, 101(9)(2010): 3182-3187. https://doi.org/10.1016/j.biortech.2009.12.010
[124] A. Roy, S. Chakraborty, S.P. Kundu, R..K. Basak, S.B. Majumder, & B. Adhikari. Improvement in mechanical properties of jute fibers through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresource Technology, 107(2012): 222-228. https://doi.org/10.1016/j.biortech.2011.11.073
[125] N. Defoirdt, S. Biswas, L. De Vriese, L. Ngoc Tran, L. Q., Acker, J. V. & Q. Ahsan, Verpoest, I. Assessment of the tensile properties of coir, bamboo and jute fibre. Composites Part A: Applied Science and Manufacturing, 41(2010): 558-595. https://doi.org/10.1016/j.compositesa.2010.01.005
[126] I.M. De Rosa, J.M. Kenny, D. Puglia, C. Santulli, & F. Sarasini. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1)(2010a): 116-122. https://doi.org/10.1016/j.compscitech.2009.09.013
[127] F.A. Silva, N. Chawla & R.D.T. Filho, Tensile behaviour of high performance natural (sisal) fibres. Composites Science and Technology, 68(15-16)(2008): 3438-3443. https://doi.org/10.1016/j.compscitech.2008.10.001
[128] H. Gu. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Materials Letters, 30(2009): 3931-3934. https://doi.org/10.1016/j.matdes.2009.01.035
[129] D. Ray, & B.K. Sarkar. Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science, 80(7)(2001): 1013-1020. https://doi.org/10.1002/app.1184
[130] M.W. Barsoum. Fundamentals of Ceramics, International ed. India: The McGraw Hill Companies (1997).
[131] A. Mukherjee, P.K. Ganguly, & D. Sur. Structural mechanics of jute: The effects of hemicellulose or lignin removal. Journal of the Textile Institute, 84(3)(2003): 348-353. https://doi.org/10.1080/00405009308658967
[132] C.A. Hill, H.P.S. Khalil, & M.D. Hale. A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products, 8(1)(1998): 53-63. https://doi.org/10.1016/S0926-6690(97)10012-7
[133] M.J. Jhon, B. Francis, K.T. Varughese, & S. Thomas. Effect of chemical modification on properties of hybrid fibre biocomposites. Composites Part A: Applied Science and Engineering, 39(2008): 352-363. https://doi.org/10.1016/j.compositesa.2007.10.002
[134] K.L. Pickering, G.W. Beckermann, S.N. Alam, & N.J. Foreman. Optimising industrial hemp fibre for composites. Composites Part A: Applied Science and Manufacturing, 38(2)(2007), 461-468. https://doi.org/10.1016/j.compositesa.2006.02.020
[135] M.M. Alamgir Sayeed & P. Ayush P. Optimisation of the surface treatment of jute fibres for natural fibre reinforced polymer composites using Weibull analysis, The Journal of The Textile Institute (2019). https://doi.org/10.1080/00405000.2019.1610998