All-Cellulose Composites Derived from Natural Plant Fibers

$30.00

All-Cellulose Composites Derived from Natural Plant Fibers

Juan Francisco Delgado, Jimena Bovi, María Laura Foresti, Celina Bernal

A promising approach to prepare high performance cellulose-reinforced biodegradable materials is the production of innovative composites made completely from cellulose according to the concept of single-polymer composites. All-cellulose composites (ACCs) are distinguished for the excellent interfacial adhesion between the matrix and the reinforcement which results in outstanding mechanical properties, and for their enhanced recyclability. In this context, the current chapter will focus on the most important processing routes and the main properties of ACCs and ACNCs (all-cellulose nanocomposites) totally or partially derived from natural plant fibers, using either the entire fibers or the cellulose isolated from them.

Keywords
Natural Plant Fibers, Cellulose, Biocomposite Materials, All-Cellulose Composites and Nanocomposites, Processing Methods, Properties

Published online 4/10/2022, 36 pages

Citation: Juan Francisco Delgado, Jimena Bovi, María Laura Foresti, Celina Bernal, All-Cellulose Composites Derived from Natural Plant Fibers, Materials Research Foundations, Vol. 122, pp 1-36, 2022

DOI: https://doi.org/10.21741/9781644901854-1

Part of the book on Sustainable Natural Fiber Composites

References
[1] Fortune Business Insights, Cellulose: Global market analysis, insights and forecast, 2019-2026, (2020).
[2] J.A. Ávila Ramírez, P. Cerrutti, C. Bernal, M.I. Errea, M.L. Foresti, Nanocomposites based on poly(lactic acid) and bacterial cellulose acetylated by an α-hydroxyacid catalyzed route, J. Polym. Environ., 27 (2019) 510–520. https://doi.org/10.1007/s10924-019-01367-5
[3] T. Nishino, I. Matsuda, K. Hirao, All-cellulose composite, Macromolecules, 37 (2004) 7683–7687. https://doi.org/10.1021/ma049300h
[4] T. Huber, J. Müssig, O. Curnow, S. Pang, S. Bickerton, M.P. Staiger, A critical review of all-cellulose composites, J. Mater. Sci., 47 (2012) 1171–1186. https://doi.org/10.1007/s10853-011-5774-3
[5] S. Mukhopadhyay, B. Adak, Single-Polymer Composites, Chapman and Hall/CRC, Milton, 2018. https://doi.org/10.1201/9781351272247
[6] K. Houston, M.R. Tucker, J. Chowdhury, N. Shirley, A. Little, The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions, Front. Plant Sci., 7 (2016) 1–18. https://doi.org/10.3389/fpls.2016.00984
[7] A. Komuraiah, N.S. Kumar, B.D. Prasad, Chemical composition of natural fibers and its influence on their mechanical properties, Mech. Compos. Mater., 50 (2014) 359–376. https://doi.org/10.1007/s11029-014-9422-2
[8] B. Madsen, E.K. Gamstedt, Wood versus plant fibers: similarities and differences in composite applications, Adv. Mater. Sci. Eng., 2013 (2013). https://doi.org/10.1155/2013/564346
[9] H. Shaghaleh, X. Xu, S. Wang, Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives, RSC Adv., 8 (2018) 825–842. https://doi.org/10.1039/C7RA11157F
[10] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev., 40 (2011) 3941–3994. https://doi.org/10.1039/c0cs00108b
[11] A. Chami Khazraji, S. Robert, Interaction effects between cellulose and water in nanocrystalline and amorphous regions: a novel approach using molecular modeling, J. Nanomater., 2013 (2013). https://doi.org/10.1155/2013/409676
[12] T. Kondo, Hydrogen bonds in cellulose and cellulose derivatives, in: S. Dimitriu (Ed.), Polysaccharides Struct. Divers. Funct. Versatility, 2nd Edition, CRC Press, Boca Raton, 2004: pp. 69–98. https://doi.org/10.1201/9781420030822.ch3
[13] T. Heinze, Cellulose: Structure and Properties, in: O.J. Rojas (Ed.), Cellul. Chem. Prop. Fibers, Nanocelluloses Adv. Mater., Springer International Publishing, Cham, 2016: pp. 1–52. https://doi.org/10.1007/12_2015_319
[14] L.C. Da Sousa, J. Humpula, V. Balan, B.E. Dale, S.P.S. Chundawat, Impact of ammonia pretreatment conditions on the Cellulose III allomorph ultrastructure and its enzymatic digestibility, ACS Sustain. Chem. Eng., 7 (2019) 14411–14424. https://doi.org/10.1021/acssuschemeng.9b00606
[15] T. Nishino, K. Takano, K. Nakamae, Elastic modulus of the crystalline regions of cellulose polymorphs, J. Polym. Sci. Part B Polym. Phys., 33 (1995) 1647–1651. https://doi.org/10.1002/polb.1995.090331110
[16] C. Olsson, G. Westman, Direct dissolution of cellulose: background, means and applications, Cellul. – Fundam. Asp., (2013). https://doi.org/10.5772/52144
[17] T. Liebert, Cellulose solvents – remarkable history, bright future, in: T.F. Liebert, T.J. Heinze, K.J. Edgar (Eds.), Cellulose solvents: for analysis, shaping and chemical modification, ACS Symposium Series, Washington, Volume 1033, 2010, pp. 3–54. https://doi.org/10.1021/bk-2010-1033.ch001
[18] T. Heinze, A. Koschella, Solvents applied in the field of cellulose chemistry: a mini review, Polímeros, 15 (2005) 84–90. https://doi.org/10.1590/S0104-14282005000200005
[19] S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review, Polym. Eng. Sci., 49 (2009) 1253–1272. https://doi.org/10.1002/pen.21328
[20] T. Huber, S. Pang, M.P. Staiger, All-cellulose composite laminates, Compos. Part A Appl. Sci. Manuf., 43 (2012) 1738–1745. https://doi.org/10.1016/j.compositesa.2012.04.017
[21] F. Chen, D. Sawada, M. Hummel, H. Sixta, T. Budtova, Unidirectional all-cellulose composites from flax via controlled impregnation with ionic liquid, Polymers, 12 (2020) 1010. https://doi.org/10.3390/polym12051010
[22] W. Gindl-Altmutter, J. Keckes, J. Plackner, F. Liebner, K. Englund, M.-P. Laborie, All-cellulose composites prepared from flax and lyocell fibres compared to epoxy–matrix composites, Compos. Sci. Technol., 72 (2012) 1304–1309. https://doi.org/10.1016/j.compscitech.2012.05.011
[23] S. Ouajai, R.A. Shanks, Preparation, structure and mechanical properties of all-hemp cellulose biocomposites, Compos. Sci. Technol., 69 (2009) 2119–2126. https://doi.org/10.1016/j.compscitech.2009.05.005
[24] L. Brinchi, F. Cotana, E. Fortunati, J.M. Kenny, Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications, Carbohydr. Polym., 94 (2013) 154–169. https://doi.org/10.1016/j.carbpol.2013.01.033
[25] N. Soykeabkaew, N. Arimoto, T. Nishino, T. Peijs, All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres, Compos. Sci. Technol., 68 (2008) 2201–2207. https://doi.org/10.1016/j.compscitech.2008.03.023
[26] Q. Yang, A. Lue, L. Zhang, Reinforcement of ramie fibers on regenerated cellulose films, Compos. Sci. Technol., 70 (2010) 2319–2324. https://doi.org/10.1016/j.compscitech.2010.09.012
[27] C. Qin, N. Soykeabkaew, N. Xiuyuan, T. Peijs, The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites, Carbohydr. Polym., 71 (2008) 458–467. https://doi.org/10.1016/j.carbpol.2007.06.019
[28] B. Adak, S. Mukhopadhyay, Jute based all-cellulose composite laminates, Indian J. Fibre Text. Res., 41 (2016) 380–384.
[29] K.O. Reddy, B. Ashok, K.R.N. Reddy, Y.E. Feng, J. Zhang, A.V. Rajulu, Extraction and characterization of novel lignocellulosic fibers from Thespesia Lampas plant, Int. J. Polym. Anal. Charact., 19 (2014) 48–61. https://doi.org/10.1080/1023666X.2014.854520
[30] B. Ashok, K.O. Reddy, K. Madhukar, J. Cai, L. Zhang, A.V. Rajulu, Properties of cellulose/Thespesia Lampas short fibers bio-composite films, Carbohydr. Polym., 127 (2015) 110–115. https://doi.org/10.1016/j.carbpol.2015.03.054
[31] A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng., 276–277 (2000) 1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
[32] S. Tanpichai, S. Witayakran, Mechanical properties of all-cellulose composites made from pineapple leaf microfibers, Key Eng. Mater., 659 (2015) 453–457. https://doi.org/10.4028/www.scientific.net/KEM.659.453
[33] S. Tanpichai, S. Witayakran, All-cellulose composite laminates prepared from pineapple leaf fibers treated with steam explosion and alkaline treatment, J. Reinf. Plast. Compos., 36 (2017) 1146–1155. https://doi.org/10.1177/0731684417704923
[34] H. V Lee, S.B.A. Hamid, S.K. Zain, Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process, Sci. World J., 2014 (2014) 631013. https://doi.org/10.1155/2014/631013
[35] C. Álvarez, Ú. Montoya, P. Gañán, Materiales compuestos elaborados mediante la disolución parcial de celulosa obtenida a partir de residuos de la agroindustria platanera, Rev. Latinoam. Metal. y Mater., S1 (2009) 1213–1217.
[36] R. Arévalo, O. Picot, R.M. Wilson, N. Soykeabkaew, T. Peijs, All-cellulose composites by partial dissolution of cotton fibres, J. Biobased Mater. Bioenergy, 4 (2010) 129–138. https://doi.org/10.1166/jbmb.2010.1077
[37] M. Shibata, N. Teramoto, T. Nakamura, Y. Saitoh, All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid, Carbohydr. Polym., 98 (2013) 1532–1539. https://doi.org/10.1016/j.carbpol.2013.07.062
[38] T. Senthil Muthu Kumar, N. Rajini, K. Obi Reddy, A. Varada Rajulu, S. Siengchin, N. Ayrilmis, All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers, Int. J. Biol. Macromol., 112 (2018) 1310–1315. https://doi.org/10.1016/j.ijbiomac.2018.01.167
[39] H. Qi, J. Cai, L. Zhang, S. Kuga, Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution, Biomacromolecules, 10 (2009) 1597–1602. https://doi.org/10.1021/bm9001975
[40] Q. Yang, T. Saito, L. Berglund, A. Isogai, Cellulose nanofibrils efficiently improve mechanical, thermal and oxygen-barrier properties of all-cellulose composites by nano- reinforcement mechanism and nanofibril-induced crystallization, Nanoscale, 7 (2015) 17957–17963. https://doi.org/10.1039/C5NR05511C
[41] S. Fujisawa, E. Togawa, N. Hayashi, Orientation control of cellulose nanofibrils in all-cellulose composites and mechanical properties of the films, J. Wood Sci., 62 (2016) 174–180. https://doi.org/10.1007/s10086-015-1533-4
[42] T. Pullawan, A.N. Wilkinson, S.J. Eichhorn, Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites, Biomacromolecules, 13 (2012) 2528–2536. https://doi.org/10.1021/bm300746r
[43] Q. Cheng, D. Ye, W. Yang, S. Zhang, H. Chen, C. Chang, L. Zhang, Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells, ACS Sustain. Chem. Eng., 6 (2018) 8040–8047. https://doi.org/10.1021/acssuschemeng.8b01599
[44] Q. Zhao, R.C.M. Yam, B. Zhang, Y. Yang, X. Cheng, R.K.Y. Li, Novel all-cellulose ecocomposites prepared in ionic liquids, Cellulose, 16 (2009) 217–226. https://doi.org/10.1007/s10570-008-9251-3
[45] S.K. Ramamoorthy, M. Skrifvars, A. Persson, A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers, Polym. Rev., 55 (2015) 107–162. https://doi.org/10.1080/15583724.2014.971124
[46] H. Bian, P. Tu, J.Y. Chen, Fabrication of all-cellulose nanocomposites from corn stalk, J. Sci. Food Agric., 100 (2020) 4390–4399. https://doi.org/10.1002/jsfa.10476
[47] L. Wu, F. Tian, J. Sun, On the use of cellulose nanowhisker as reinforcement in all-cellulose composite membrane from corn stalk, J. Appl. Polym. Sci., 138 (2021) 1–12. https://doi.org/10.1002/app.50206
[48] M. Ahmadi, A.J. Latibari, M.M. Faezipour, S. Hedjazi, Neutral sulfite semi-chemical pulping of rapeseed residues, Turkish J. Agric. For., 34 (2010) 11–16.
[49] H. Yousefi, M. Faezipour, T. Nishino, A. Shakeri, G. Ebrahimi, All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw, Polym. J., 43 (2011) 559–564. https://doi.org/10.1038/pj.2011.31
[50] H. Yousefi, T. Nishino, M. Faezipour, G. Ebrahimi, A. Shakeri, Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding, Biomacromolecules, 12 (2011) 4080–4085. https://doi.org/10.1021/bm201147a
[51] H. Yousefi, M. Mashkour, R. Yousefi, Direct solvent nanowelding of cellulose fibers to make all-cellulose nanocomposite, Cellulose, 22 (2015) 1189-1200. https://doi.org/10.1007/s10570-015-0579-1
[52] M. Ghaderi, M. Mousavi, H. Yousefi, M. Labbafi, All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application, Carbohydr. Polym., 104 (2014) 59–65. https://doi.org/10.1016/j.carbpol.2014.01.013
[53] K. Labidi, O. Korhonen, M. Zrida, A.H. Hamzaoui, T. Budtova, All-cellulose composites from alfa and wood fibers, Ind. Crops Prod., 127 (2019) 135–141. https://doi.org/10.1016/j.indcrop.2018.10.055
[54] V.P. Kommula, K.O. Reddy, M. Shukla, T. Marwala, E.V.S. Reddy, A.V. Rajulu, Extraction, modification, and characterization of natural ligno-cellulosic fiber strands from napier grass, Int. J. Polym. Anal. Charact., 21 (2016) 18–28. https://doi.org/10.1080/1023666X.2015.1089650
[55] M. John, S. Thomas, Biofibres and biocomposites, Carbohydr. Polym., 71 (2008) 343–364. https://doi.org/10.1016/j.carbpol.2007.05.040
[56] L.K. Kian, N. Saba, M. Jawaid, M.T.H. Sultan, A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites, Int. J. Biol. Macromol., 121 (2019) 1314–1328. https://doi.org/10.1016/j.ijbiomac.2018.09.040
[57] A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial application of cellulose nano-composites – A review, Biotechnol. Reports, 21 (2019) e00316. https://doi.org/10.1016/j.btre.2019.e00316
[58] H. Charreau, E. Cavallo, M. L. Foresti, Patents involving nanocellulose: analysis of their evolution since 2010, Carbohydr. Polym., 237 (2020) 116039. https://doi.org/10.1016/j.carbpol.2020.116039
[59] ISO/TS 20477:2017(E) (2017). Nanotechnologies – Standard terms and their definition for cellulose nanomaterial.
[60] N.J. Capiati, R.S. Porter, The concept of one polymer composites modelled with high density polyethylene, J. Mater. Sci., 10 (1975) 1671–1677. https://doi.org/10.1007/BF00554928
[61] J. Karger-Kocsis, T. Bárány, Single-polymer composites (SPCs): Status and future trends, Compos. Sci. Technol., 92 (2014) 77–94. https://doi.org/10.1016/j.compscitech.2013.12.006
[62] B.D. Rabideau, A.E. Ismail, Effect of water content in n-methylmorpholine n-oxide/cellulose solutions on thermodynamics, structure, and hydrogen bonding, J. Phys. Chem. B, 119 (2015) 15014–15022. https://doi.org/10.1021/acs.jpcb.5b07500
[63] T. Rosenau, A. Potthast, H. Sixta, P. Kosma, The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process), Prog. Polym. Sci., 26 (2001) 1763–1837. https://doi.org/10.1016/S0079-6700(01)00023-5
[64] A.F. Turbak, A. El-Kafrawy, J. Fred W. Snyder, A.B. Auerbach, Solvent system for cellulose, U.S. Patent 4,302,252. (1981).
[65] U. Henniges, S. Schiehser, T. Rosenau, A. Potthast, Cellulose solubility: dissolution and analysis of “problematic” cellulose pulps in the solvent system DMAc/LiCl, in: T.F. Liebert, T.J. Heinze, K.J. Edgar (Eds.), Cellulose solvents: for analysis, shaping and chemical modification, ACS Symposium Series, Washington, Volume 1033, 2010, pp. 165-177. https://doi.org/10.1021/bk-2010-1033.ch009
[66] J.M. Spörl, F. Batti, M.P. Vocht, R. Raab, A. Müller, F. Hermanutz, M.R. Buchmeiser, Ionic liquid approach toward manufacture and full recycling of all-cellulose composites, Macromol. Mater. Eng., 303 (2018) 1–8. https://doi.org/10.1002/mame.201700335
[67] T. Heinze, S. Köhler, Dimethyl sulfoxide and ammonium fluorides-novel cellulose solvents, in: T.F. Liebert, T.J. Heinze, K.J. Edgar (Eds.), Cellulose solvents: for analysis, shaping and chemical modification, ACS Symposium Series, Washington, Volume 1033, 2010, pp. 103-118. https://doi.org/10.1021/bk-2010-1033.ch005
[68] S. Guzman-Puyol, L. Ceseracciu, G. Tedeschi, S. Marras, A. Scarpellini, J.J. Benítez, A. Athanassiou, J.A. Heredia-Guerrero, Transparent and robust all-cellulose nanocomposite packaging materials prepared in a mixture of trifluoroacetic acid and trifluoroacetic anhydride, Nanomater., 9 (2019). https://doi.org/10.3390/nano9030368
[69] Y. Li, J. Wang, X. Liu, S. Zhang, Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects, Chem. Sci., 9 (2018) 4027–4043. https://doi.org/10.1039/C7SC05392D
[70] O.A. El Seoud, A. Koschella, L.C. Fidale, S. Dorn, T. Heinze, Applications of ionic liquids in carbohydrate chemistry: a window of opportunities, Biomacromolecules, 8 (2007) 2629–2647. https://doi.org/10.1021/bm070062i
[71] Y. Fukaya, K. Hayashi, S.S. Kim, H. Ohno, Design of polar ionic liquids to solubilize cellulose without heating, in: T.F. Liebert, T.J. Heinze, K.J. Edgar (Eds.), Cellulose solvents: for analysis, shaping and chemical modification, ACS Symposium Series, Washington, Volume 1033, 2010, pp. 55-66. https://doi.org/10.1021/bk-2010-1033.ch002
[72] N. Hildebrandt, Paper-based composites via the partial dissolution route with NaOH/urea, Dissertation thesis, University of Oulu, Finland, 2018.
[73] B. Lindman, B. Medronho, L. Alves, C. Costa, H. Edlund, M. Norgren, The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena, Phys. Chem. Chem. Phys., 19 (2017) 23704–23718. https://doi.org/10.1039/C7CP02409F
[74] A. Lue, L. Zhang, Advances in aqueous cellulose solvents, in: T.F. Liebert, T.J. Heinze, K.J. Edgar (Eds.), Cellulose solvents: for analysis, shaping and chemical modification, ACS Symposium Series, Washington, Volume 1033, 2010, pp. 67-89. https://doi.org/10.1021/bk-2010-1033.ch003
[75] Q. Yang, H. Qi, A. Lue, K. Hu, G. Cheng, L. Zhang, Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature, Carbohydr. Polym., 83 (2011) 1185–1191. https://doi.org/10.1016/j.carbpol.2010.09.020
[76] L. Yan, Z. Gao, Dissolving of cellulose in PEG/NaOH aqueous solution, Cellulose, 15 (2008) 789-796. https://doi.org/10.1007/s10570-008-9233-5
[77] D.L. Johnson, Process for strengthening swellable fibrous material with an amine oxide and the resulting material, U. S. Patent 3,447,956. (1966)
[78] A.J. Sayyed, N.A. Deshmukh, D. V. Pinjari, A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell, Cellulose, 26 (2019) 2913–2940. https://doi.org/10.1007/s10570-019-02318-y
[79] C. McCormick, Novel cellulose solutions, U.S. Patent 4,278,790. (1980)
[80] T.R. Dawsey, C.L. McCormick, The lithium chloride/dimethylacetamide solvent for cellulose: a literature review, J. Macromol. Sci. Part C, 30 (1990) 405–440. https://doi.org/10.1080/07366579008050914
[81] A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose, Chem. Rev., 109 (2009) 6712–6728. https://doi.org/10.1021/cr9001947
[82] S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, G. Wu, Dissolution of cellulose with ionic liquids and its application: a mini-review, Green Chem., 8 (2006) 325-327. https://doi.org/10.1039/b601395c
[83] M. Hasegawa, A. Isogai, F. Onabe, M. Usuda, Dissolving states of cellulose and chitosan in trifluoroacetic acid, J. Appl. Polym. Sci., 45 (1992) 1857–1863. https://doi.org/10.1002/app.1992.070451020
[84] A. Isogai, R.H. Atalla, Dissolution of cellulose in aqueous NaOH solutions, Cellulose, 5 (1998) 309–319. https://doi.org/10.1023/A:1009272632367
[85] H. Qi, C. Chang, L. Zhang, Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution, Cellulose, 15 (2008) 779–787. https://doi.org/10.1007/s10570-008-9230-8
[86] N. Isobe, S. Kimura, M. Wada, S. Kuga, Mechanism of cellulose gelation from aqueous alkali-urea solution, Carbohydr. Polym., 89 (2012) 1298–1300. https://doi.org/10.1016/j.carbpol.2012.03.023
[87] H. Leipner, S. Fischer, E. Brendler, W. Voigt, Structural changes of cellulose dissolved in molten salt hydrates, Macromol. Chem. Phys., 201 (2000) 2041–2049. https://doi.org/10.1002/1521-3935(20001001)201:15<2041::AID-MACP2041>3.0.CO;2-E
[88] J. Gong, J. Li, J. Xu, Z. Xiang, L. Mo, Research on cellulose nanocrystals produced from cellulose sources with various polymorphs, RSC Adv., 7 (2017) 33486–33493. https://doi.org/10.1039/C7RA06222B
[89] E.N. Johnson Ford, S.K. Mendon, S.F. Thames, J.W. Rawlins, X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers, J. Eng. Fiber. Fabr., 5 (2010) 10–20. https://doi.org/10.1177/155892501000500102
[90] T. Nishino, T. Peijs, All -cellulose Composites, in: K. Oksman, A. Mathew, A. Bismarck, O. Rojas, M. Sain (Eds.), Handb. Green Mater., World Scientific Publishing, Singapore, 2014: pp. 201–216. https://doi.org/10.1142/9789814566469_0028
[91] K. Chen, W. Xu, Y. Ding, P. Xue, P. Sheng, H. Qiao, J. He, Hemp-based all-cellulose composites through ionic liquid promoted controllable dissolution and structural control, Carbohydr. Polym., 235 (2020) 116027. https://doi.org/10.1016/j.carbpol.2020.116027
[92] X. Wei, W. Wei, Y. Cui, T. Lu, M. Jiang, Z. Zhou, Y. Wang, All-cellulose composites with ultra-high mechanical properties prepared through using straw cellulose fiber, RSC Adv., 6 (2016) 93428–93435. https://doi.org/10.1039/C6RA20533J
[93] W. Gindl, J. Keckes, All-cellulose nanocomposite, Polymer, 46 (2005) 10221–10225. https://doi.org/10.1016/j.polymer.2005.08.040
[94] M. Nogi, K. Handa, A.N. Nakagaito, H. Yano, Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix, Appl. Phys. Lett., 87 (2005) 1–3. https://doi.org/10.1063/1.2146056
[95] H. Yousefi, T. Nishino, M. Faezipour, G. Ebrahimi, A. Shakeri, S. Morimune, All-cellulose nanocomposite made from nanofibrillated cellulose, Adv. Compos. Lett., 19 (2010) 190-195. https://doi.org/10.1177/096369351001900602
[96] Q. Yang, T. Saito, L.A. Berglund, A. Isogai, Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization, Nanoscale, 7 (2015) 17957–17963. https://doi.org/10.1039/C5NR05511C