Bio-Mediated Synthesis of Nanomaterials for Dye-Sensitized Solar Cells


Bio-Mediated Synthesis of Nanomaterials for Dye-Sensitized Solar Cells

G. Murugadoss, T.S. Shyju, P. Kuppusami

Preparation of nanomaterials using bio-mediated techniques is a novel and environmentally friendly method. It has been well demonstrated that the environment friendly green synthesis method is more adoptable for synthesis of various type of nanoparticles including metal oxide and metal sulphide-based compounds, nanocomposites, core-shell and quantum dots (QDs) for several applications. This chapter mainly discusses on the bio-mediated synthesis of the nanoparticles for dye-sensitized solar cells (DSSCs) applications. In addition, this chapter briefly discusses about synthesis of the nanomaterials using various plant extracts and then how it can be used as photoanode or photocathode or sensitizer in DSSCs. It also highlights how the nanoparticles influence in improving the photovoltaic performance.

Green Synthesis, Dye-Sensitized Solar Cells (DSSCs), Quantum Dots, Electrolyte, Efficiency

Published online 3/25/2022, 36 pages

Citation: G. Murugadoss, T.S. Shyju, P. Kuppusami, Bio-Mediated Synthesis of Nanomaterials for Dye-Sensitized Solar Cells, Materials Research Foundations, Vol. 121, pp 175-210, 2022


Part of the book on Bioinspired Nanomaterials for Energy and Environmental Applications

[1] B. Oregan, M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature 353 (1991) 737–740.
[2] I. Benesperi, H. Michaels, M. Freitag, The researcher’s guide to solid-state dye-sensitized solar cells, J. Mater. Chem. C 6 (2018) 11903-11942.
[3] N. Sakai, T. Miyasaka, T.N. Murakami, Efficiency Enhancement of ZnO-Based Dye-Sensitized Solar Cells by Low-Temperature TiCl 4 Treatment and Dye Optimization, J. Phys. Chem. C 117 (2013) 10949–10956.
[4] J.L. Gardea-Torresdey, K.J. Tiemann, G. Gamez, K. Dokken, S. Tehuacanero, M. José-Yacamán, Gold nanoparticles obtained by bio-precipitation from gold(III) solutions, J. Nanoparticle Res. 1 (1999) 397–404.
[5] S. Stankic, S. Suman, F. Haque, J. Vidic, Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties, J. Nanobiotechnology 14 (2016) 1–20.
[6] N.C. Sharma, S. V. Sahi, S. Nath, J.G. Parsons, J.L. Gardea-Torresdey, P. Tarasankar, Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials, Environ. Sci. Technol. 41 (2007) 5137–5142.
[7] J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles, Langmuir 19 (2003) 1357–1361.
[8] J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, M.J. Yacaman, Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants, Nano Lett. 2 (2002) 397–401.
[9] S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang, Green synthesis of silver nanoparticles using Capsicum annuum L. Extract, Green Chem. 9 (2007) 852–858.
[10] S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract, Biotechnol. Prog. 22 (2006) 577–583.
[11] G. Zhai, K.S. Walters, D.W. Peate, P.J.J. Alvarez, J.L. Schnoor, Transport of Gold Nanoparticles through Plasmodesmata and Precipitation of Gold Ions in Woody Poplar, Environ. Sci. Technol. Lett. 1 (2014) 146–151.
[12] M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya, R. Sumathi, Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method, J. Photochem. Photobiol. B Biol. 171 (2017) 117–124.
[13] D. Hariharan, K. Srinivasan, L.C. Nehru, Synthesis and Characterization of Tio2 Nanoparticles Using Cynodon Dactylon Leaf Extract for Antibacterial and Anticancer (A549 Cell Lines) Activity, J. Nanomedicine Res. 5 (2017) 00138.
[14] S.P. Goutam, G. Saxena, V. Singh, A.K. Yadav, R.N. Bharagava, K.B. Thapa, Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater, Chem. Eng. J. 336 (2018) 386–396.
[15] T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Mater. Sci. Semicond. Process 32 (2015) 55–61.
[16] P. Sutradhar, M. Saha, Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application, J. Exp. Nanosci. 11 (2016) 314–327.
[17] T.V. Surendra, S.M. Roopan, Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract, J. Photochem. Photobiol. B Biol. 161 (2016) 122–128.
[18] M. Yadi, E. Mostafavi, B. Saleh, S. Davaran, I. Aliyeva, R. Khalilov, M. Nikzamir, N. Nikzamir, A. Akbarzadeh, Y. Panahi, M. Milani, Current developments in green synthesis of metallic nanoparticles using plant extracts: a review, Artif. Cells, Nanomedicine Biotechnol. 46 (2018) S336–S343.
[19] V.K. Vidhu, D. Philip, Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 134 (2015) 372–379.
[20] R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, V. Ravikumar, Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 121 (2014) 746–750.
[21] A.Y. Ghidan, T.M. Al-Antary, A.M. Awwad, Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid, Environ. Nanotechnology, Monit. Manag. 6 (2016) 95–98.
[22] F. Ijaz, S. Shahid, S.A. Khan, W. Ahmad, S. Zaman, Green synthesis of copper oxide nanoparticles using abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activities, Trop. J. Pharm. Res. 16 (2017) 743–753.
[23] S. Saleem, B. Ahmed, M.S. Khan, M. Al-Shaeri, J. Musarrat, Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants, Microb. Pathog. 111 (2017) 375–387.
[24] B. Ahmmad, K. Leonard, M. Shariful Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo, Y. Kuroda, Green synthesis of mesoporous hematite (α-Fe2O 3) nanoparticles and their photocatalytic activity, Adv. Powder Technol. 24 (2013) 160–167.
[25] N. Thovhogi, E. Park, E. Manikandan, M. Maaza, A. Gurib-Fakim, Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract, J. Alloys Compd. 655 (2016) 314–320.
[26] S.S. Shankar, A. Ahmad, M. Sastry, Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles, Biotechnol. Prog. 19 (2003) 1627–1631.
[27] F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract, Mater. Lett. 161 (2015) 124–127.
[28] P.N. Kumar, K. Sakthivel, V. Balasubramanian, Microwave assisted biosynthesis of rice shaped ZnO nanoparticles using Amorphophallus konjac tuber extract and its application in dye sensitized solar cells, Mater. Sci. Pol. 35 (2017) 111–119.
[29] A.S. Prasad, Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea), Mater. Sci. Semicond. Process. 53 (2016) 79–83.
[30] G. Sharmila, M. Farzana Fathima, S. Haries, S. Geetha, N. Manoj Kumar, C. Muthukumaran, Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract, J. Mol. Struct. 1138 (2017) 35–40.
[31] M.S. Geetha, H. Nagabhushana, H.N. Shivananjaiah, Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent, J. Sci. Adv. Mater. Devices 1 (2016) 301–310.
[32] S. Naraginti, P.L. Kumari, R.K. Das, A. Sivakumar, S.H. Patil, V.V. Andhalkar, Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats, Mater. Sci. Eng. C 62 (2016) 293–300.
[33] S.H. Gebre, M.G. Sendeku, New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview, SN Appl. Sci. 1 (2019) 928.
[34] M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E.J. Poinern, Green synthesis of metallic nanoparticles via biological entities, Materials 8 (2015) 7278-7308.
[35] V.L. Das, R. Thomas, R.T. Varghese, E. V. Soniya, J. Mathew, E.K. Radhakrishnan, Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area, 3 Biotech. 4 (2014) 121–126.
[36] T.G. Deepak, G.S. Anjusree, S. Thomas, T.A. Arun, S. V. Nair, A. Sreekumaran Nair, A review on materials for light scattering in dye-sensitized solar cells, RSC Adv. 4 (2014) 17615–17638.
[37] M.M. Rahman, S.H. Im, J.J. Lee, Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles, Nanoscale 8 (2016) 5884–5891.
[38] N. Kulkarni, U. Muddapur, Biosynthesis of metal nanoparticles: A review, J. Nanotechnol. 2014 (2014) Article ID 510246.
[39] G. Gahlawat, A.R. Choudhury, A review on the biosynthesis of metal and metal salt nanoparticles by microbes, RSC Adv., 9 (2019) 12944-12967.
[40] J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications, Chem. Soc. Rev. 44 (2015) 6330–6374.
[41] M. Shafiq, S. Anjum, C. Hano, I. Anjum, B.H. Abbasi, An overview of the applications of nanomaterials and nanodevices in the food industry, Foods. 9 (2020) 1–27.
[42] A. Fakharuddin, R. Jose, T.M. Brown, F. Fabregat-Santiago, J. Bisquert, A perspective on the production of dye-sensitized solar modules, Energy Environ. Sci. 7 (2014) 3952–3981.
[43] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Gratzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science 334 (2011) 629–634.
[44] G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo, F. Bonaccorso, Vegetable-based dye-sensitized solar cells, Chem. Soc. Rev. 44 (2015) 3244–3294.
[45] A. Hagfeldt, M. Graetzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev. 95 (1995) 49–68.
[46] K. Prasad, A.K. Jha, ZnO nanoparticles: synthesis and adsorption study, Nat. Sci. 1 (2009) 129–135.
[47] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 205–213.
[48] A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of silver nanoparticles plant extracts, Biotech Adv. 31 (2013) 346-356.
[49] K. Ishikawa, C.J. Wen, K. Yamada, T. Okubo, The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance, J. Chem. Eng. Jpn. 37 (2004) 645–649.
[50] S. Saravanan, R. Kato, M. Balamurugan, S. Kaushik, T. Soga, Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles, Journal of Science: Advanced Materials and Devices 2 (2017) 418-424.
[51] S.C.G.K. Daniel, N. Mahalakshmi, J. Sandhiya, K. Nehru, M. Sivakumar, Rapid synthesis of Ag nanoparticles using Henna extract for the fabrication of Photoabsorption Enhanced Dye Sensitized Solar Cell (PEDSSC), Advanced Materials Research 678 (2013) 349-360.
[52] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
[53] C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, B. Park, The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells, Appl. Phys. Lett. 99 (2011) 253107.
[54] T. Solaiyammal, P. Murugakoothan, Green synthesis of Au and the impact of Au on the efficiency of TiO2 based dye sensitized solar cell, Materials Science for Energy Technologies 2 (2019) 171–180.
[55] M.N. Asghar, A. Anwar, H.M.A. Rahman, S. Shahid, I. Nadeem, Green synthesis and characterization of metal ions-mixed titania for application in dye-sensitized solar cells, Toxicological & Environmental Chemistry 100 (2018) 659-676.
[56] S. Surya, R. Thangamuthu, SM. Senthil Kumar, G. Murugadoss, Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness, Superlattices and Microstructures 102 (2017) 424-441.
[57] S.U. Ekar, G. Shekhar, Y.B. Khollam, P.N. Wani, S.R. Jadkar, M. Naushad, M.G. Chaskar, S.S. Jadhav, A. Fadel, V.V. Jadhav, J.H. Shendkar, R.S. Mane, Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods, Journal of Solid-State Electrochemistry 21 (2017) 2713–2718.
[58] I.C. Maurya, S. Singh, S. Senapati, P. Srivastava, L. Bahadur, Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells, Solar Energy 194 (2019) 952–958.
[59] R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath, V. Alagan, Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications, J. Mater. Sci.: Mater. Electron. 28 (2017) 10374–10381.
[60] J.K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, G. Singh, Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications, J. Alloys and Comp. 632 (2015) 321-325.
[61] J.K. Sharma, P. Srivastava, G. Singh, M.S. Akhtar, S. Ameen, Green synthesis of Co3O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells, Mater. Sci. and Eng. B 193 (2015) 181–188.
[62] M. Wu, X. Lin, A. Hagfeldt, T. Ma, A novel catalyst of WO2 nanorod for the counter electrode of dye sensitized solar cells, Chem. Commun. 47 (2011) 4535-4537.
[63] Y. Liu, S. Yun, X. Zhou, Y. Hou, T. Zhang, J. Li, A. Hagfeldt, Intrinsic origin of superior catalytic properties of tungsten-based catalysts in dye-sensitized solar cells, Electrochim Acta 242 (2017) 390-399.
[64] J. Li, S. Yun, F. Han, Y. Si, A. Arshad, Y. Zhang, B. Chidambaram, N. Zafar, X. Qiao, Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells, J. Colloid and Interface Sci. 578 (2020) 184-194.
[65] P. Dauthal, M. Mukhopadhyay, Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications, Ind. Eng. Chem. Res. 55 (2016) 9557-9577.
[66] X. Ji, W. Liu, Y. Leng, A. Wang. Facile synthesis of ZnO@ TiO2 core-shell nanorod thin films for dye-sensitized solar cells, Journal of Nanomaterials 2015 (2015) Article ID 647089.
[67] N. Órdenes-Aenishanslins, G. Anziani-Ostuni, C.P. Quezada, R. Espinoza-González, D. Bravo, J.M. Perez-Donoso, Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitized solar cells, Frontiers in microbiology 10 (2019) 1587.
[68] B. Gao, C. Shen, B. Zhang, M. Zhang, S. Yuan, Y. Yang, G. Chen, Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells, Journal of Applied Physics 115 (2014) 193104.
[69] R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N.P. Cook, E.L.G. Samuel, C.-C. Hwang, G. Ruan, G. Ceriotti, A.-R.O. Raji, A.A. Marti, J.M. Tour, Coal as an abundant source of graphene quantum dots, Nat. Commun. 4 (2013) 2943.
[70] X. Guo, H. Zhang, H. Sun, M.O. Tade, S. Wang, Green synthesis of carbon quantum dots for sensitized solar cells, ChemPhotoChem 1 (2017) 116–119.