Bioinspired Nanostructured Materials for Energy-Related Electrocatalysis


Bioinspired Nanostructured Materials for Energy-Related Electrocatalysis

M. Rajkumar, C. Pandiyarajan and P. Rameshkumar

Conventional synthetic methods are facing great challenges to prepare functional nanostructures with fine design, tunable property, high efficiency and good sustainability. In recent decades, bioinspired synthesis has been extensively applied for the synthesis of nanomaterials with fascinating properties. Modifying the electrodes with bioinspired nanomaterials is of great interest because of their unique advantages and outperforming characteristics. In this chapter, the recent progresses on the bio-inspired synthesis of nanomaterials and their applications in energy-related electrocatalysis are focussed. The general mechanisms of key electrocatalytic processes such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), methanol oxidation and formic acid oxidation reactions are discussed. Importantly, the characterization of bio-inspired nanomaterials and their enhanced energy-relevant electrocatalytic properties in terms of onset potential, peak current density and durability are elaborately reviewed. The chapter is concluded with the advantages and limitations of bioinspired methodology and the possible solutions to improve the electrocatalytic performance in the future.

Bioinspired Nanomaterials, Oxygen Evolution Reaction, Hydrogen Evolution Reaction, Oxygen Reduction Reaction, Small Organic Molecule Oxidation Reaction

Published online 3/25/2022, 24 pages

Citation: M. Rajkumar, C. Pandiyarajan and P. Rameshkumar, Bioinspired Nanostructured Materials for Energy-Related Electrocatalysis, Materials Research Foundations, Vol. 121, pp 117-140, 2022


Part of the book on Bioinspired Nanomaterials for Energy and Environmental Applications

[1] Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy 1 (2016) 16071.
[2] G. Chen, L. Yan, H. Luo, S. Guo, Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage, Adv. Mater 28 (2016) 7580–7602.
[3] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (2012) 294–303.
[4] E. Dujardin, C. Peet, G. Stubbs, J. N. Culver and S. Mann, Organization of metallic nanoparticles using tobacco mosaic virus templates, Nano Lett. 3 (2003) 413–417.
[5] J. Xie, Y. Zheng and J. Y. Ying, Protein – directed synthesis of highly fluorescent gold nanoclusters, J. Am. Chem. Soc. 131 (2009) 888–889.
[6] M. Mertig, L.C. Ciacchi, R. Seidel, W. Pompe and A. De Vita, DNA as a selective metallization template, Nano Lett. 2 (2002) 841–844.
[7] F.A. Armstrong, N.A. Belsey, J.A. Cracknell, G. Goldet, A. Parkin, E. Reisner, K.A. Vincent, A.F. Wait, Dynamic electrochemical investigations of hydrogen oxidation and reproduction by enzymes and implications for future technology, Chem. Soc. Rev. 38 (2009) 36−51.
[8] M. Frey, Hydrogenases: hydrogen – activating enzymes, Chem Bio Chem 3 (2002) 153−160.<153::AID-CBIC153>3.0.CO;2-B
[9] C. Tard, C.J. Pickett, Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, [FeFe]- Hydrogenases, J. Chem. Rev. 109 (2009) 2245−2274.
[10] X.D. Liu, H.Y. Diao, N. Nishi, Applied chemistry of natural DNA, Chem. Soc. Rev. 37 (2008) 2745−2757.
[11] A.J. Patil, J.L. Vickery, T.B. Scott, S. Mann, Aqueous stabilization and self – assembly of graphene sheets into layered bio-nano composites using DNA, Adv. Mater. 21 (2009) 3159−3164.
[12] H.S. Kim, M. Kim, M.S. Kang, J. Ahn, Y. Sung, and W.C Yoo, Bio-inspired synthesis of melanin-like nanoparticles for highly N-doped carbons utilized as enhanced CO2 adsorbents and efficient oxygen reduction catalysts, ACS Sustainable Chem. Eng. 6 (2018) 2324-2333.
[13] Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Dopamine – melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for invivo cancer therapy, Adv. Mater. 25 (2013) 1353–1359.
[14] Y.E. Miao, J. Yan, Y. Ouyang, H. Lu, F. Lai, Y. Wu, T. Liu, A Bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction, Appl. Surf. Sci. 443 (2018) 266-273.
[15] F.A. Armstrong, and J. Hirst, Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes, Proc. Natl. Acad. Sci. USA 108 (2011) 14049–14054.
[16] Y.Q. Lyu, F. Ciucci, Activating the bio functionality of a perovskite oxide toward oxygen reduction and oxygen evolution reactions, ACS Appl. Mater. 9 (2017) 35829–35836.
[17] S. Ghosh and R. N. Basu, Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives, Nanoscale 10 (2018) 11241-11280.
[18] U.A. Paulus, T.J. Schmidt, H.A. Gasteiger and R.J. Behm, Oxygen reduction on a high surface area Pt/ Vulcan carbon catalyst: A thin film rotating ring-disk electrode study, J. Electro anal. Chem. 495 (2001) 134–145.
[19] B. E. Conway, B. V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2 and the role of chemisorbed H, Electrochim. Acta, 47 (2002) 3571–3594.
[20] M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J. Zou, Z.L. Wang, Electro catalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review, Nano Energy 37 (2017) 136–157.
[21] T. Huang, S. Mao, G. Zhou, Z. Zhang , Z. Wen, X. Huang, S. Ci and J. Chen, High performance catalyst support for methanol oxidation with graphene and vanadium carbonitride, Nanoscale 7 (2015) 1301.
[22] A.S. Arico, S. Srinivasan, and V. Antonucci, DMFCs: From fundamental aspects to technology development. Fuel Cells 1 (2001) 133–161.<133::AID-FUCE133>3.0.CO;2-5
[23] T. Shen, J. Zhang, K. Chen, S. Deng, and D. Wang, Recent Progress of Palladium-based Electrocatalysts for the Formic Acid Oxidation Reaction, Energy Fuels 34 (2020) 9137-9153.
[24] J.F. Vilaplana, J.V.P. Rondon, C.B. Rogero, J.M. Feliu, E. Herrero, Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces, J. Mater. Chem. A 5 (2017) 21773-21784.
[25] A. Serov and C. Kwak, Direct hydrazine fuel cells: A review, Appl. Catal. B: Environmental 98 (2010) 1–9.
[26] J. Huang, Q. Lu, X. Ma, X. Yang, Bio-inspired FeN5 moieties anchored on three-dimensional graphene aerogel to improve oxygen reduction catalytic performance, J. Mater. Chem. A 6 (2018) 18488-18497.
[27] R. Cao, R. Thapa1, H. Kim, X. Xu, M.G. Kim, Q.Li, N. Park, M. Liu, J. Cho, Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst, Nat. Commun. 4 (2013) 2076.
[28] Z. Tong, D. Yang, X. Zhao, J. Shi, F. Dinga, X. Zou, Z. Jiang, Bio-inspired synthesis of three-dimensional porous g-C3N4@carbon microflowers with enhanced oxygen evolution reactivity, Chem. Eng. J. 337 (2018) 312–321.
[29] C.D. Giovanni, W. Wang, S. Nowak, J. Greneche, H. Lecoq, L. Mouton, M. Giraud, C. Tard, Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water, ACS Catal. 4 (2014) 681−687.
[30] Y. Yan, X.R. Shi, M. Miao, T. He, Z.H. Dong, K. Zhan, J.H. Yang, B. Zhao, B.Y. Xia, Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction, Nano. Res. 11 (2018), 3537–3547.
[31] A. Wang , K. Ju , Q. Zhang, P. Song, J. Wei and J. Feng, Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions, J. Power Sources 326 (2016) 227–234.
[32] K. Qu, L. Wu, J. Ren, X. Qu, Natural DNA – modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the suzuki reaction, ACS Appl. Mater. Interfaces 4 (2012) 5001−5009.
[33] D. Grumelli, B. Wurster, S. Stepanow and K. Kern, Bio-inspired nanocatalysts for the oxygen reduction reaction, Nat. Commun. 4 (2013) 2904.
[34] W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, X.L. Feng, K. Müllen, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction, Angew. Chem. 126 (2014) 1596-1600.
[35] T.N. Ye, L.B. Lv, X.H. Li, M. Xu, J.S. Chen, Strongly veined carbon nano leaves as a highly efficient metal-free electrocatalyst, Angew. Chem. Int. Ed. 53 (2014) 6905-6909.
[36] T.N. Huan, R.T. Jane, A. Benayad, L. Guetaz, P.D. Tran, V. Artero, Bio-inspired noble metal-free nanomaterials approaching platinum performances for H2 evolution and uptake, Energy. Environ. Sci. 9 (2016) 940-947.
[37] P.D. Tran, A.L. Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave and V. Artero, Noncovalent modification of carbon nanotubes with pyrene – functionalized nickel complexes: Carbon monooxide tolerant catalysts for hydrogen evolution and uptake, Angew. Chem. Int. Ed. 50 (2011) 1371-1374.
[38] W.J. Shaw, M.L. Helm and D.L. DuBois, A modular energy – based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation, Biochim. Biophys. Acta Bioenerg. 1827 (2013) 1123-1139.
[39] A. Lasia, Hydrogen Evolution Reaction, Handbook of Fuel Cells (2010).
[40] Z.S. Cai, Y. Shi, S.S. Bao, Y. Shen, X.H. Xia, L.M. Zheng, Bioinspired Engineering of Cobalt-Phosphate Nanosheets for Robust Hydrogen Evolution Reaction, ACS Catal. 8 (2018) 3895−3902.
[41] S. Cobo, J. Heidkamp, P.A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, A Janus cobalt-based catalytic material for electrosplitting of water. Nat. Mater. 11 (2012) 802−807.
[42] N. Jiang, L. Bogoev, M. Popova, S. Gul, J. Yano, Y.Sun, Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water, J. Mater. Chem.A 2 (2014) 19407−19414.
[43] Y. Sun, C. Liu, D.C. Grauer, J.J. Yano, R.R. Long, P.C. Yang, J. Chang, Electrodeposited cobalt-sulfide catalyst for electrochemical and photo electrochemical hydrogen generation from water, J. Am. Chem. Soc. 135 (2013) 17699−17702.
[44] H.J. Cui, Z. Zhou, D.Z. Jia, Heteroatom-doped graphene as electrocatalysts for air cathodes, Mater. Horiz. 4 (2017) 7–19.
[45] G.L. Tian, Q. Zhang, B.S. Zhang, Y.G. Jin, J.Q. Huang, D.S. Su, F. Wei, Toward full exposure of “active sites”: Nano carbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity, Adv. Funct. Mater. 24 (2014) 5956–5961.
[46] Z.X. Pei, J.X. Gu, Y.K. Wang, Z.J. Tang, Z.X. Liu, Y. Huang, Y. Huang, J.X. Zhao, Z.F. Chen, C.Y. Zhi, Component matters: paving the roadmap toward enhanced electrocatalytic performance of graphitic C3N4-based catalysts via atomic tuning, ACS Nano 11 (2017) 6004–6014.
[47] S. Chen, J.J. Duan, P.J. Bian, Y.H. Tang, R.K. Zheng, S.Z. Qiao, Three-dimensional smart catalyst electrode for oxygen evolution reaction, Adv. Energy Mater. 5 (2015) 1500936.
[48] Z.X. Pei, H.F. Li, Y. Huang, Q. Xue, Y. Huang, M.S. Zhu, Z.F. Wang, C.Y. Zhi, Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst, Energy Environ. Sci. 10 (2017) 742–749.
[49] T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Methanol electro oxidation on a colloidal PtRu-alloy fuel cell catalyst, Electrochem. Commun. 1 (1999) 1–4.
[50] N.M. Markovic and P.N. Ross Surface science studies of model fuel cell electrocatalysts, Jr. Surf. Sci. Rep. 45 (2002) 117–229.
[51] J.Y. Kim, T. Kim, J.W. Suk, H. Chou, J.H. Jang, J.H. Lee, I.N. Kholmanov, D. Akinwande, R.S. Ruoff, Enhanced dielectric performance in polymer composite films with carbon nanotube – reduced graphene oxide hybrid filler, Small, 10 (2014) 3405–3411.
[52] H. Lee, S.E. Habas, G.A. Somorjai, P. Yang, Localized Pd over growth on cubic Pt nano crystals for enhanced electro catalytic oxidation of formic acid, J. Am. Chem. Soc. 130 (2008) 5406−5407.
[53] S. Zhang, Y. Shao, G. Yin, Y. Angew, Electrostatic self – assembly of a Pt around Au nanocomposite with high activity towards formic acid oxidation, Angew. Chem., Int. Ed. 49 (2010) 2211−2214.
[54] I.V. Yang, H.H. Throp, Kinetics of metal-mediated one electron oxidation of guanine in polymeric DNA and in oligonucleotides containing trinucleotide repeat sequences, Inorg. Chem. 2000, 39, 4969−4976.
[55] M.E Napier, D.O. Hull, H.H. Thorp, Electrocatalytic oxidation of DNA – wrapped carbon nano tubes, J. Am. Chem. Soc. 2005, 127, 11952−11953.