Bioinspired Nanomaterials for Photocatalytic Degradation of Toxic Chemicals


Bioinspired Nanomaterials for Photocatalytic Degradation of Toxic Chemicals

Vellaichamy Balakumar, Ramalingam Manivannan and Keiko Sasaki

This chapter focuses on photocatalysts synthesized based on plant extracts (stems, leaves, flowers, roots), microorganisms, and natural oils. This chapter presents various bio-inspired nanomaterials like metal, metal oxide nanoparticles, metal and metal oxide-based nanocomposite, with different morphologies, modifications, and recent progress advances. The inspired nanomaterials, which can be used as sustainable photocatalysts for degrading toxic chemicals and deliberately discussed further highlight this catalyst’s enormous potential. The role of catalysts, which includes surface area, charge separation, and biocompatibility, have also been elaborately explained. Moreover, future challenges and opportunities are included in this chapter. The information is expected to be comprehensive and valuable to the chemistry and materials science community interested in bioinspired photocatalysts for environmental remediation and beyond.

Bioinspired Nanomaterials, Synthesis, Photocatalytic Degradation, Charge Separation Mechanism, Toxic Chemicals

Published online 3/25/2022, 34 pages

Citation: Vellaichamy Balakumar, Ramalingam Manivannan and Keiko Sasaki, Bioinspired Nanomaterials for Photocatalytic Degradation of Toxic Chemicals, Materials Research Foundations, Vol. 121, pp 83-116, 2022


Part of the book on Bioinspired Nanomaterials for Energy and Environmental Applications

[1] C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: A review, Chem. Eng. J., 306 (2016) 1116-1137.
[2] W. Zhang, M. Wang, W. Zhao, B. Wang, Magnetic composite photocatalyst ZnFe2O4/BiVO4: synthesis, characterization, and visible-light photocatalytic activity, Dalton Trans., 42 (2013) 15464-15474.
[3] S. Yi Lee, S.J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem. 19 (2013) 1761-1769.
[4] A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Appl. Catal. A Gen., 555 (2018) 47-74.
[5] B. Vellaichamy, P. Periakaruppan, Ag nanoshell catalyzed dedying of industrial effluents, RSC Adv., 6 (2016) 31653-31660.
[6] B. Vellaichamy, P. Periakaruppan, Synergistic combination of a novel metal-free mesoporous band-gap-modified carbon nitride grafted polyaniline nanocomposite for decontamination of refractory pollutant, Ind. Eng. Chem. Res., 57 (2018) 6684-6695.
[7] B. Vellaichamy, P. Periakaruppan, R. Arumugam, K. Sellamuthu, B. Nagulan, A novel photocatalytically active mesoporous metal-free PPy grafted MWCNT nanocomposite, J. Colloid Interf. Sci., 514 (2018) 376-385.
[8] S.K. Ponnaiah, P. Periakaruppan, B. Vellaichamy, B. Nagulan, Efficacious separation of electron-hole pairs in CeO2-Al2O3 nanoparticles embedded GO heterojunction for robust visible-light driven dye degradation, J. Colloid Interf. Sci., 512 (2018) 219-230.
[9] A.M. Awad, R. Jalab, A. Benamor, M.S. Nasser, M.M.B. Abbad, M.E. Naas, A.W. Mohammad, Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview, J. Mol. Liq., 301 (2020) 112335.
[10] L. Zheng, Y. Jiao, H. Zhong, C. Zhang, J. Wang, Y. Wei, Insight into the magnetic lime coagulation-membrane distillation process for desulfurization wastewater treatment: From pollutant removal feature to membrane fouling, J. Hazard. Mater., 391 (2020) 122202.
[11] Q. Yang, Y. Ma, F. Chen, F. Yao, J. Sun, S. Wang, K. Yi, L. Hou, X. Li, D. Wang, Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water, Chem. Eng. J., 378 (2019) 122149.
[12] U. Baig, A. Matin, M.A. Gondal, S.M. Zubair, Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants, J. Clean. Prod., 208 (2019) 904-915.
[13] B.G. Ryu, J. Kim, J.I. Han, K. Kim, D. Kim, B.K. Seo, C.M. Kang, J.W. yang, Evaluation of an electro-flotation-oxidation process for harvesting bio-flocculated algal biomass and simultaneous treatment of residual pollutants in coke wastewater following an algal-bacterial process, Algal Res., 31 (2018) 497-505.
[14] E. Vaudevire, F. Radmanesh, A. Kolkman, D. Vughs, E. Cornelissen, J. Post, W.V.D. Meer, Fate and removal of trace pollutants from an anion exchange spent brine during the recovery process of natural organic matter and salts, Water Res., 154 (2019) 34-44.
[15] X.H. Lin, S.F.Y. Li, Impact of the spatial distribution of sulfate species on the activities of SO42-/TiO2 photocatalysts for the degradation of organic pollutants in reverse osmosis concentrate, Appl. Catal. B Environ., 170-171 (2015) 263-272.
[16] D. Yu, J. Cui, X. Li, H. Zhang, Y. Pei, Electrochemical treatment of organic pollutants in landfill leachate using a three-dimensional electrode system, Chemosphere, 243 (2020) 125438.
[17] B. Vellaichamy, P. Periakaruppan, B. Nagulan, Reduction of Cr6+ from wastewater using a novel in situ-synthesized PANI/MnO2/TiO2 nanocomposite: renewable, selective, stable, and synergistic catalysis, ACS Sustain. Chem. Eng., 5 (2017) 9313-9324.
[18] B. Vellaichamy, P. Periakaruppan, A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution, J. Catal., 344 (2016) 795-805.
[19] B. Vellaichamy, P. Periakaruppan, Catalytic hydrogenation performance of an in situ assembled Au@g-C3N4-PANI nanoblend: synergistic inter-constituent interactions boost the catalysis, New J. Chem., 41 (2017) 7123-7132.
[20] B. Vellaichamy, P. Periakaruppan, Silver nanoparticle-embedded RGO-nanosponge for superior catalytic activity towards 4-nitrophenol reduction, RSC Adv., 6 (2016) 88837-88845.
[21] V. Balakumar, H. Kim, J.W. Ryu, R. Manivannan, Y.A. Son, Uniform assembly of gold nanoparticles on S-doped g-C3N4 nanocomposite for effective conversion of 4-nitrophenol by catalytic reduction, J. Mater. Sci. Technol., 40 (2020) 176-184.
[22] V. Balakumar, H. Kim, R. Manivannan, H. Kim, J.W. Ryu, G. Heo, Y.A. Son, Ultrasound-assisted method to improve the structure of CeO2@polypyrrole core-shell nanosphere and its photocatalytic reduction of hazardous Cr6+, Ultrason. Sonochem., 59 (2019) 104738.
[23] K.S. Kumar, B. Vellaichamy, T. Paulmony, Visible Light Active Metal-Free Photocatalysis: N-Doped Graphene Covalently Grafted with g-C3N4 for Highly Robust Degradation of Methyl Orange, Solid State Sci., 94 (2019) 99-105.
[24] Z. Xiong, Z. Xu, Y. Li, L. Dong, J. Wang, J. Zhao, X. Chen, Y. Zhao, H. Zhao, J. Zhang, Incorporating highly dispersed and stable Cu+ into TiO2 lattice for enhanced photocatalytic CO2 reduction with water, Appl. Surf. Sci., 507 (2020) 145095.
[25] D. Zhong, W. Liu, P. Tan, A. Zhu, Y. Liu, X. Xiong, J. Pan, Insights into the synergy effect of anisotropic {001} and {230}facets of BaTiO3 nanocubes sensitized with CdSe quantum dots for photocatalytic water reduction, Appl. Catal. B Environ., 227 (2018) 1-12.
[26] T. Billo, I. Shown, A.K. Anbalagan, T.A. Effendi, A. Sabbah, F.Y. Fu, C.M. Chu, W.Y. Woon, R.S. Chen, C.H. Lee, K.H. Chen, L.C. Chen, A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity, Nano Energy, 72 (2020) 104717.
[27] Q. Guo, L. Fu, T. Yan, W. Tian, D. Ma, J. Li, Y. Jiang, X. Wang, Improved photocatalytic activity of porous ZnO nanosheets by thermal deposition graphene-like g-C3N4 for CO2 reduction with H2O vapor, Appl. Surf. Sci., 509 (2020) 144773.
[28] X.F. Chen, S.C. Kou, C.S. Poon, Rheological behaviour, mechanical performance, and NOx removal of photocatalytic mortar with combined clay brick sands-based and recycled glass-based nano-TiO2 composite photocatalysts, Constr. Build. Mater., 240 (2020) 117698.
[29] J.M. Cordero, R. Hingorani, J. Relinque, M. Grande, R. Borge, A. Narros, M. Castellote, NOx removal efficiency of urban photocatalytic pavements at pilot scale, Sci. Total Environ., 719 (2020) 137459.
[30] C. Li, Y. Xu, W. Tu, G. Chen, R. Xu, Metal-free photocatalysts for various applications in energy conversion and environmental purification, Green Chem., 19 (2017) 882-899.
[31] W. Xue, D. Huang, X. Wen, S. Chen, M. Cheng, R. Deng, B. Li, Y. Yang, X. Liu, Silver-based semiconductor Z-scheme photocatalytic systems for environmental purification, J. Hazard. Mater., 390 (2020) 122128.
[32] P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A.R. Sani, A.H. Bandegharaei, Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification, Arab. J. Chem., 13 (2020) 3498-3520.
[33] X. Zhang, J. Wang, X.X. Dong, Y.K. Lv, Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment, Chemosphere, 242 (2020) 125144.
[34] R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review, Adv. Colloid Interfac., 272 (2019) 102009.
[35] X. Sun, Z. Liu, H. Yu, Z. Zheng, D. Zeng, Facile synthesis of BiFeO3 nanoparticles by modified microwave-assisted hydrothermal method as visible light driven photocatalysts, Mater. Lett., 219 (2018) 225-228.
[36] E. Keles, M. Yildirim, T. Ozturk, O.A. Yildirim, Hydrothermally synthesized UV light active zinc stannate:tin oxide (ZTO:SnO2) nanocomposite photocatalysts for photocatalytic applications, Mat. Sci. Semicon. Proc., 110 (2020) 104959.
[37] Z. Xing, Y. Chen, C. Liu, J. Yang, J. Xu, Y. Situ, H. Huang, Synthesis of core-shell ZnO/oxygen doped g-C3N4 visible light driven photocatalyst via hydrothermal method, J. Alloy. Compd., 708 (2017) 853-861.
[38] P. Zhang, S. Yin, V. Petrykin, M. Kakihana, T. Sato, Preparation of high performance fibrous titania photocatalysts by the solvothermal reaction of protonated form of tetratitanate, J. Mol. Catal. A Chem., 309 (2009) 50-56.
[39] T. Chankhanittha, V. Somaudon, J. Watcharakitti, V. Piyavarakorn, S, Nanan Performance of solvothermally grown Bi2MoO6 photocatalyst toward degradation of organic azo dyes and fluoroquinolone antibiotics, Mater. Lett., 258 (2020) 126764.
[40] Y. Li, Y. Song, Z. Ma, S. Niu, J. Li, N. Li, Synthesis of phosphonic acid silver-graphene oxide nanomaterials with photocatalytic activity through ultrasonic-assisted method, Ultrason. Sonochem., 44 (2018) 106-114.
[41] B. Liang, C. Sun, D. Han, W. Zhang, R. Zhang, Y. Zhang, Y. Liu, Effect of annealing temperature on structure and photocatalytic efficiency of SnO microspheres synthesized by ultrasonic reaction method, Ceram. Int., 44 (2018) 23334-23338.
[42] A. Manohar, C. Krishnamoorthi, Magnetic and photocatalytic studies on Zn1-xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method, J. Photoch. Photobio. B, 177 (2017) 95-104.
[43] J. Liang, J. Wang, K. Song, X. Wang, K. Yu, C. Liang, Enhanced photocatalytic activities of Nd-doped TiO2 under visible light using a facile sol-gel method, J. Rare Earth., 38 (2020) 148-156.
[44] Y. Zhai, Y. Yin, W. Zhang, Y. Han, X. Zhao, X. Liu, One-step synthesis of butterfly-like SnC2O4 by simple precipitation method and photocatalytic performance, Mat. Sci. Semicon. Proc., 56 (2016) 83-89.
[45] M. Zhang, Y. Li, Q. Wang, R. Jin, H. Xu, S. Gao, Effect of different reductants on the composition and photocatalytic performances of Ag/AgIO3 hybrids prepared by in-situ reduction method, Inorg. Chem. Commun., 115 (2020) 107876.
[46] M. Bandeira, M. Giovanela, M.R. Ely, D.M. Devine, J.D.S. Crespo, Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation, Sustain. Chem. Pharm., 15 (2020) 100223.
[47] V. Hoseinpour, N. Ghaemi, Green synthesis of manganese nanoparticles: Applications and future perspective-A review, J. Photoch. Photobio. B, 189 (2018) 234-243.
[48] A. Singh, P.K. Gautam, A. Verma, V. Singh, P.M. Shivapriya, S. Shivalkar, A.K. Sahoo, S.K. Samanta, Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review, Biotechnol. Rep., 25 (2020) e00427.
[49] M.N. Owaid, Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review, Environ. Nanotechnol. Monit. Manag., 12 (2019) 100256.
[50] S. Ahmed, Annu, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry, J. Photoch. Photobio. B, 166 (2017) 272-284.
[51] V.K.M. Katta, R.S. Dubey, Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties, Mater. Today Proc., (2020).
[52] U.B. Manik, A. Nande, S. Raut, S.J. Dhoble, Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica, Results Mater., 6 (2020) 100086.
[53] W. Ahmad, D. Kalra, Green synthesis, characterization and anti-microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract, J. King Saud Univ. Sci., (2020).
[54] P. Narasaiah, B.K. Mandal, N.C. Sarada, Green synthesis of Pd NPs from Pimpinella tirupatiensis plant extract and their application in photocatalytic activity dye degradation, IOP Conf. Ser. Mat. Sci., 263 (2017) 022013.
[55] E. Haritha, S.M. Roopan, G. Madhavi, G. Elango, N.A.A. Dhabi, M.V. Arasu, Environmental friendly synthesis of palladium nanoparticles and its photocatalytic activity against diazo dye to sustain the natural source, J. Clust. Sci., 28 (2017) 1225-1236.
[56] A.A. Olajire, A.A. Mohammed, Green synthesis of palladium nanoparticles using Ananas comosus leaf extract for solid-phase photocatalytic degradation of low density polyethylene film, J. Environ. Chem. Eng., 7 (2019) 103270.
[57] P. Kumar, M. Govindaraju, S. Senthamilselvi, K. Premkumar, Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca, Colloid. Surface. B, 103 (2013) 658-661.
[58] B. Kumar, K. Smita, L. Cumbal, A. Debut, Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: An ecofriendly approach, Ind. Crop. Prod., 58 (2014) 238-243.
[59] D. Baruah, R.N.S. Yadav, A. Yadav, A.M. Das, Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities, J. Photoch. Photobio. B, 201 (2019) 111649.
[60] D. Baruah, M. Goswami, R.N.S. Yadav, A. Yadav, A.M. Das, Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes, J. Photoch. Photobio. B, 186 (2018) 51-58.
[61] S.P. Vinay, N. Chandrasekhar, Facile green chemistry synthesis of Ag nanoparticles using Areca catechu extracts for the antimicrobial activity and photocatalytic degradation of methylene blue dye, Mater. Today Proc., 9 (2019) 499-505.
[62] J.F. Li, Y.C. Liu, M. Chokkalingam, E.J. Rupa, R. Mathiyalagan, J. Hurh, J.C. Ahn, J.K. Park, J.Y. Pu, D.C. Yang, Phytosynthesis of silver nanoparticles using rhizome extract of Alpinia officinarum and their photocatalytic removal of dye under UV and visible light irradiation, Optik, 208 (2020) 164521.
[63] B.C. Choudhary, D. Paul, T. Gupta, S.R. Tetgure, V.J. Garole, A.U. Borse, D.J. Garole, Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles, J. Environ. Sci., 55 (2017) 236-246.
[64] B. Paul, B. Bhuyan, D.D. Purkayastha, M. Dey, S.S. Dhar, Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue, Mater. Lett., 148 (2015) 37-40.
[65] G.A. Molina, R. R. Esparza, J.L.L. Miranda, A.R.H. Martinez, B.L.E. Sanchez, E.A.E. Pena, M. Estevez, Green synthesis of Ag nanoflowers using Kalanchoe daigremontiana extract for enhanced photocatalytic and antibacterial activities, Colloid. Surface. B, 180 (2019) 141-149.
[66] A. Ahmed, M. Usman, B. Yu, X. Ding, Q. Peng, Y. Shen, H. Cong, Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate, J. Photoch. Photobio. B, 202 (2020) 111682.
[67] I.A. Radini, N. Hasan, M.A. Malik, Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications, J. Photoch. Photobio. B, 183 (2018) 154-163.
[68] U. Kamran, H.N. Bhatti, M. Iqbal, S. Jamil, M. Zahid, Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract, J. Mol. Struct., 1179 (2019) 532-539.
[69] K. Roy, C.K. Ghosh, C.K. Sarkar, Degradation of toxic textile dyes and detection of hazardous Hg2+ by low-cost bioengineered copper nanoparticles synthesized using Impatiens balsamina leaf extract, Mater. Res. Bull., 94 (2017) 257-262.
[70] I. Bibi, S. Kamal, A. Ahmed, M. Iqbal, S. Nouren, K. Jilani, N. Nazar, M. Amir, A. Abbas, S. Ata, F. Majid, Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation, Int. J. Biol. Macromol., 103 (2017) 783-790.
[71] S. Shams, A.U. Khan, Q. Yuan, W. Ahmad, Y. Wei, Z.U.H. Khan, S. Shams, A. Ahmad, A.U. Rahman, S. Ullah, Facile and eco-benign synthesis of Au@Fe2O3 nanocomposite: Efficient photocatalytic, antibacterial and antioxidant agent, J. Photoch. Photobio. B, 199 (2019) 111632.
[72] C. Karthik, N. Swathi, S.P. Prabha, D.G. Caroline, Green synthesized rGO-AgNP hybrid nanocomposite-An effective antibacterial adsorbent for photocatalytic removal of DB-14 dye from aqueous solution, J. Environ. Chem. Eng., 8 (2020) 103577.
[73] P. Panchal, D.R. Paul, A. Sharma, P. Choudhary, P. Meena, S.P. Nehra, Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water, J. Colloid Interf. Sci., 563 (2020) 370-380.
[74] K.S. Vizuete, B. Kumar, A.V. Vaca, A. Debut, L. Cumbal, Mortiño (Vaccinium floribundum Kunth) berry assisted green synthesis and photocatalytic performance of silver-graphene nanocomposite, J. Photoch. Photobio. A, 329 (2016) 273-279.
[75] D. Ayodhya, G. Veerabhadram, Green synthesis of garlic extract stabilized Ag@CeO2 composites for photocatalytic and sonocatalytic degradation of mixed dyes and antimicrobial studies, J. Mol. Struct., 1205 (2020) 127611.
[76] N.L. Gavade, A.N. Kadam, S.B. Babar, A.D. Gophane, K.M. Garadkar, S.W. Lee, Biogenic synthesis of gold-anchored ZnO nanorods as photocatalyst for sunlight-induced degradation of dye effluent and its toxicity assessment, Ceram. Int., 46 (2020) 11317-11327.
[77] S.H. Khan, B. Pathak, ZnO based photocatalytic degradation of persistent pesticides: A comprehensive review, Environ. Nanotechnol. Monit. Manag., j.enmm.2020.100290 (2020).
[78] M Golmohammadi, M. Honarmand, S. Ghanbari, A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes, Spectrochim. Acta A, 229 (2020) 117961.
[79] U. Singhal, R. Pendurthi, M. Khanuja, Prunus: A natural source for synthesis of zinc oxide nanoparticles towards photocatalytic and antibacterial applications, Mater. Today Proc., (2020).
[80] S.M.T.H. Moghaddas, B. Elahi, V. Javanbakht, Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation, J. Alloy. Compd., 821 (2020) 153519.
[81] Z.U.H. Khan, H.M. Sadiq, N.S. Shah, A.U. Khan, N. Muhammad, S.U. Hasan, K. Tahir, S.Z. Safi, F.U. Khan, M. Imran, N. Ahmad, F. Ullah, A. Ahmad, M. Sayed, M.S. Khalid, S.A. Qaisrani, M. Ali, A. Zakir, Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications, J. Photoch. Photobio. B, 192 (2019) 147-157.
[82] G. Madhumitha, J. Fowsiya, N. Gupta, A. Kumar, M. Singh, Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel-mediated ZnO nanoparticles, J. Phys. Chem. Solids, 127 (2019) 43-51.
[83] Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, F. Peng, Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity, Green Chem. Lett. Rev., 8 (2015) 59-63.
[84] S.S.M. Hassan, W.I.M.E. Azab, H.R. Ali, M.S.M. Mansour, Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene, Adv. Nat. Sci. Nanosci., 6 (2015) 045012.
[85] R. Vinayagam, R. Selvaraj, P. Arivalagan, T. varadavenkatesan, Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers, J. Photoch. Photobio. B, 203 (2020) 111760.
[86] L. Chen, I. Batjikh, J. Hurh, Y. Han, Y. Huo, H. Ali, J.F. Li, E.J. Rupa, J.C. Ahn, R. Mathiyalagan, D.C. Yang, Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue, Optik, 184 (2019) 324-329.
[87] D. Suresh, P.C. Nethravathi, Udayabhanu, H. Rajanaika, H. Nagabhushana, S.C. Sharma, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities, Mat. Sci. Semicon. Proc., 31 (2015) 446-454.
[88] J. Lu, H. Ali, J. Hurh, Y. Han, I. Batjikh, E.J. Rupa, G. Anandapadmanaban, J.K. Park, D.C. Yang, The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method, Optik, 184 (2019) 82-89.
[89] B. Siripireddy, B.K. Mandal, Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity, Adv. Powder Technol., 28 (2017) 785-797.
[90] B.P. Kumar, M. Arthanareeswari, S. Devikala, M. Sridharan, J.A. Selvi, T.P. Malini, Green synthesis of zinc oxide nanoparticles using typha latifolia. L leaf extract for photocatalytic applications, Mater. Today Proc., 14 (2019) 332-337.
[91] M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung, G. Katona, Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts, Mat. Sci. Semicon. Proc., 39 (2015) 23-29.
[92] J. Lu, I. Batjikh, J. Hurh, Y. Han, H. Ali, R. Mathiyalagan, C. Ling, J.C. Ahn, D.C. Yang, Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus, Optik, 182 (2019) 980-985.
[93] Y.J. Shim, V. Soshnikova, G. Anandapadmanaban, R. Mathiyalagan, Z.E.J. Perez, J. Markus, Y.J. Kim, V.C. Aceituno, D.C. Yang, Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue, Optik, 182 (2019) 1015-1020.
[94] T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Mat. Sci. Semicon. Proc., 32 (2015) 55-61.
[95] S. Kanagasubbulakshmi, K. Kadirvelu, Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity, Defence Life Sci. J., 2 (2017) 422-427.
[96] K. Gottimukkala, R. Harika, D. Zamare, Green synthesis of iron nanoparticles using green tea leaves extract, J. Nanomed. Biotherapeut. Discov., 7 (2017) 1000151.
[97] S. Amutha, S. Sridhar, Green synthesis of magnetic iron oxide nanoparticle using leaves of Glycosmis mauritiana and their antibacterial activity against human pathogens, J. Innovat. Pharm. Biol. Sci., 5 (2018) 22-26.
[98] G. Jagathesan, P. Rajiv, Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity, Biocat. Agric. Biotechnol., 13 (2018) 90-94.
[99] S. Qasim, A. Zafer, M.S. Saif, Z. Ali, M. Nazar, M. Waqas, A.U. Haq, T. Tariq, S.G. Hassan, F. Iqbal, X.G. Shu, M. Hasan, Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity, J. Photoch. Photobio. B, 204 (2020) 111784.
[100] I. Bibi, N. Nazar, S. Ata, M. Sultan, A. Ali, A. Abbas, K. Jilani, S. Kamal, F.M. Sarim, M.I. Khan, F. Jalal, M. Iqbal, Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye, J. Mater. Res. Technol., 8 (2019) 6115-6124.
[101] S. Vasantharaj, S. sathiyavimal, P. Senthilkumar, F.L. Oscar, A. Pugazhendhi, Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation, J. Photoch. Photobio. B, 192 (2019) 74-82.
[102] M.V. Arularasu, J. Devakumar, T.V. Rajendran, An innovative approach for green synthesis of iron oxide nanoparticles: Characterization and its photocatalytic activity, Polyhedron, 156 (2018) 279-290.
[103] I. Fatimah, E.Z. Pratiwi, W.P. Wicaksono, Synthesis of magnetic nanoparticles using Parkia speciosa Hassk pod extract and photocatalytic activity for Bromophenol blue degradation, Egypt. J. Aquat. Res., 46 (2020) 35-40.
[104] S. Bishnoi, A. Kumar, R. Selvaraj, Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye, Mater. Res. Bull., 97 (2018) 121-127.
[105] J. Singh, V. Kumar, K.H. Kim, M. Rawat, Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes, Environ. Res., 177 (2019) 108569.
[106] R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, V. Ravikumar, Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation, Spectrochim. Acta A, 121 (2014) 746-750.
[107] K. Sukumar, S. Arumugam, S. Thangaswamy, S. Balakrishnan, S. Chinnappan, S. Kandasamy, Eco-friendly cost-effective approach for synthesis of copper oxide nanoparticles for enhanced photocatalytic performance, Optik, 202 (2020) 163507.
[108] A.A. Olajire, A.A. Mohammed, Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films, Adv. Powder Technol., 31 (2020) 211-218.
[109] R. Li, Z. Chen, N. Ren, Y. Wang, Y. Wang, F. Yu, Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care, J. Photoch. Photobio. B, 199 (2019) 111593.
[110] B.N. Rashmi, S.F. Harlapur, B. Avinash, C.R. Ravikumar, H.P. Nagaswarupa, M.R.A. Kumar, K. Gurushantha, M.S. Santosh, Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies, Inorg. Chem. Commun., 111 (2020) 107580.
[111] J. Ebrahimian, M. Mohsennia, M. Khayatkashani, Photocatalytic-degradation of organic dye and removal of heavy metal ions using synthesized SnO2 nanoparticles by Vitex agnus-castus fruit via a green route, Mater. Lett., 263 (2020) 127255.
[112] R. Magudieshwaran, J. Ishii, K.C.N. Raja, C. Terashima, R. Venkatachalam, A. Fujishima, S. Pitchaimuthu, Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation, Mater. Lett., 239 (2019) 40-44.
[113] A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, L.J. Kennedy, R.J. Ramalingam, H.A.A. Lohedan, Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties, J. Photoch. Photobio. B, 180 (2018) 39-50.
[114] B. Fatima, S.I. Siddiqui, R. Ahmed, S.A. Chaudhry, Green synthesis of f-CdWO4 for photocatalytic degradation and adsorptive removal of Bismarck Brown R dye from water, Water Resour. Ind., 22 (2019) 100119.
[115] M. Honarmand, M. Golmohammadi, A. Naeimi, Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes, Adv. Powder Technol., 30 (2019) 1551-1557.
[116] A.K.H. Bashir, L.C. Razanamahandry, A.C. Nwanya, K. Kaviyarasu, W. Saban, H.E.A. Mohamed, S.K.O. Ntwampe, F.I. Ezema, M. Maaza, Biosynthesis of NiO nanoparticles for photodegradation of free cyanide solutions under ultraviolet light, J. Phys. Chem. Solids, 134 (2019) 133-140.
[117] I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H.N. Bhatti, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman, M. Abbas, Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity, Adv. Powder Technol., 28 (2017) 2035-2043.
[118] P. Panchal, D.R. Paul, A. Sharma, D. Hooda, R. Yadav, P. Meena, S.P. Nehra, Phytoextract mediated ZnO/MgO nanocomposites for photocatalytic and antibacterial activities, J. Photoch. Photobio. A, 385 (2019) 112049.
[119] S. Sadhukhan, A. Bhattacharyya, D. Rana, T.K. Ghosh, J.T. Orasugh, S. Khatua, K. Acharya, D. Chattopadhyay, Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties, Mater. Chem. Phys., 247 (2020) 122906.
[120] I. Fatimah, I. Sahroni, O. Muraza, R. Doong, One-pot biosynthesis of SnO2 quantum dots mediated by Clitoria ternatea flower extract for photocatalytic degradation of rhodamine B, J. Environ. Chem. Eng., 8 (2020) 103879.
[121] K. Rajendaran, R. Muthuramalingam, S. Ayyadurai, Green synthesis of Ag-Mo/CuO nanoparticles using Azadirachta indica leaf extracts to study its solar photocatalytic and antimicrobial activities, Mat. Sci. Semicon. Proc., 91 (2019) 230-238.
[122] S. Sohrabnezhad, A. Seifi, The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity, Appl. Surf. Sci., 386 (2016) 33-40.
[123] R. Subbiah, S. Muthukumaran, V. Raja, Biosynthesis, structural, photoluminescence and photocatalytic performance of Mn/Mg dual doped ZnO nanostructures using Ocimum tenuiflorum leaf extract, Optik, 208 (2020) 164556.
[124] K. Pakzad, H. Alinezhad, M. Nasrollahzadeh, Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation, Ceram. Int., 45 (2019) 17173-17182.
[125] R. Khan, M.H. Fulekar, Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31, J. Colloid Interf. Sci., 475 (2016) 184-191.
[126] R.M. Tripathi, A.S. Bhadwal, R.K. Gupta, P. Singh, A. Shrivastav, B.R. Shrivastav, ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity, J. Photoch. Photobio. B, 141 (2014) 288-295.
[127] K. Cao, M.M. Chen, F.Y. Chang, Y.Y. Cheng, L.J. Tian, F. Li, G.Z. Deng, C. Wu, The biosynthesis of cadmium selenide quantum dots by Rhodotorula mucilaginosa PA-1 for photocatalysis, Biochem. Eng. J., 156 (2020) 107497.