Advanced Functional Membranes for Water Purification

$30.00

Advanced Functional Membranes for Water Purification

E. Kavitha, S. Vishali

Worldwide, the scarcity of water due to the contamination of water and water resources from human activities has become a challenge. To overcome this, we need adequate water treatment technologies. For the past few decades, research has becoming wider to innovate the advanced technologies for water purification. Several conventional methods have been adopted for water treatment. Extensive investigations have been done, and some are still in development to find an eco-friendly and feasible process for water purification. The advent of membrane separation processes has changed the scenario in the field of desalination and water treatment. The proper selection of membrane material and configuration could be an excellent approach towards water purification. This chapter deals with the various advanced functional membranes, the functionalization of membranes employed in UF, NF and membrane distillation. This chapter also deals with their applications in wastewater treatment.

Keywords
Advanced Functional Membranes, UF, NF, Membrane Distillation, Water Purification

Published online 2/5/2022, 23 pages

Citation: E. Kavitha, S. Vishali, Advanced Functional Membranes for Water Purification, Materials Research Foundations, Vol. 120, pp 214-236, 2022

DOI: https://doi.org/10.21741/9781644901816-7

Part of the book on Advanced Functional Membranes

References
[1] J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C.J. Sumby, Mixed-matrix membranes, Angew. Chem. Int. Ed. 56 (2017) 9292-9310. https://doi.org/10.1002/anie.201701109
[2] M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F.Ismail, Membrane technology enhancement in oil-water separation. A review, Desalination 357 (2015) 197-207. https://doi.org/10.1016/j.desal.2014.11.023
[3] W.J. Lee, P.S. Goh, W.J. Lau, C.S. Ong, A.F. Ismail, Antifouling zwitterion embedded forward osmosis thin film composite membrane for highly concentrated oily wastewater treatment, Sep. Purif. Technol. 214 (2019) 40-50. https://doi.org/10.1016/j.seppur.2018.07.009
[4] S. Gao, Y. Zhu, J. Wang, F. Zhang, J. Li, J. Jin, Layer-by-layer construction of Cu2+/Alginate multilayer modified ultrafiltration membrane with bio inspired super wetting property for high-efficient crude-oil-in-water emulsion separation, Adv. Funct. Mater. 28 (2018) 1801944. https://doi.org/10.1002/adfm.201801944
[5] S. Meng, Y. Ye, J. Mansouri, V. Chen, Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation, J. Memb. Sci. 463 (2014) 102-112. https://doi.org/10.1016/j.memsci.2014.03.027
[6] Y. Zhang, P. Cui, T. Du, L. Shan, Y. Wang, Development of a sulfated Y-doped nonstoichiometric zirconia/polysulfone composite membrane for treatment of wastewater containing oil, Sep. Purif. Technol. 70 (2009) 153-159. https://doi.org/10.1016/j.seppur.2009.09.010
[7] A. Bottino, G. Capannelli, V. Asti, P. Piaggio, Preparation and properties of novel organic–inorganic porous membranes, Sep. Purif. Technol. 22 (2001) 269-275. https://doi.org/10.1016/S1383-5866(00)00127-1
[8] A. Bottino, G. Capannelli, A. Comite, Preparation and characterization of novel porous PVDF-ZrO2 composite membranes, Desalination 146 (2002) 35-40. https://doi.org/10.1016/S0011-9164(02)00469-1
[9] D.J. Lin, C.L. Chang, F.M. Huang, L.P. Cheng, Effect of salt additive on the formation of microporous poly (vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system, Polymer 44 (2003) 413-422. https://doi.org/10.1016/S0032-3861(02)00731-0
[10] S.S. Chin, K. Chiang, A.G. Fane, The stability of polymeric membranes in a TiO2 photocatalysis process, J. Memb. Sci., 275 (2006) 202-211. https://doi.org/10.1016/j.memsci.2005.09.033
[11] G. Wu, S. Gan, L. Cui, Y. Xu, Preparation and characterization of PES/TiO2 composite membranes, Appl. Surf. Sci. 254 (2008) 7080-7086. https://doi.org/10.1016/j.apsusc.2008.05.221
[12] Y.S. Li, L. Yan, C.B. Xiang, L.J. Hong, Treatment of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF) membranes, Desalination 196 (2006) 76-83. https://doi.org/10.1016/j.desal.2005.11.021
[13] M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J. Rojas, Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization, Biomacromolecules 11 (2010) 674-681. https://doi.org/10.1021/bm901254n
[14] S. Li, Y. Gao, H. Bai, L. Zhang, P. Qu, L. Bai, Preparation and characteristics of polysulfone dialysis membranes modified with nanocrystalline cellulose, BioRes. 6 (2011) 1670-1680.
[15] C.S. Beck, M. Roman, D.G. Gray, Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions, Biomacromolecules 6 (2005) 1048-105. https://doi.org/10.1021/bm049300p
[16] A. Chakraborty, M. Sain, M. Kortschot, Cellulose microfibrils: A novel method of preparation using high shear refining and cryo crushing, Holzforchung, 59 (2005) 102-107. https://doi.org/10.1515/HF.2005.016
[17] K. Abe, S. Iwamoto, H. Yano, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood, Biomacromolecules 8 (2007) 3276-3278. https://doi.org/10.1021/bm700624p
[18] H. Bai, X. Wang, Y. Zhou, L. Zhang, Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose, Prog. Nat. Sci. Mater. Int. 22 (2012) 250-257. https://doi.org/10.1016/j.pnsc.2012.04.011
[19] J.P. Mericq, J. Mendret, S. Brosillon, C. Four, Composite polymeric membrane with entrapped TiO2 nano-sized particles for water treatment: Optimized elaboration through a structural and functional characterization, Procedia Eng. 44 (2012) 1272-1274. https://doi.org/10.1016/j.proeng.2012.08.752
[20] A. Giwa, S.W. Hasan, Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment, Sep. Purif. Technol. 241 (2020) 116735. https://doi.org/10.1016/j.seppur.2020.116735
[21] K. Ma, N. Wang, C. Wang, Q.F. An, Freezing assisted in situ growth of nano-confined ZIF-8 composite membrane for dye removal from water, J. Memb. Sci. 632 (2021) 119352. https://doi.org/10.1016/j.memsci.2021.119352
[22] F. Anwar, G. Arthanareeswaran, Silver nano-particle coated hydroxyapatite nano-composite membrane for the treatment of palm oil mill effluent, J. Water Process Eng. 31 (2019) 100844. https://doi.org/10.1016/j.jwpe.2019.100844
[23] A.K.M. Ali, M.E.A. Ali, A.A. Younes, M.M. Abo El fadl, A.B. Farag, Proton exchange membrane based on graphene oxide/polysulfone hybrid nano-composite for simultaneous generation of electricity and wastewater treatment, J. Hazard. Mater. 419 (2021) 126420. https://doi.org/10.1016/j.jhazmat.2021.126420
[24] S. Nasseri, S. Ebrahimi, M. Abtahi, R. Saeedi, Synthesis and characterization of polysulfone/graphene oxide nano-composite membranes for removal of bisphenol A from water, J. Environ. Manage. 205 (2018) 174-182. https://doi.org/10.1016/j.jenvman.2017.09.074
[25] H. Nawaz, M. Umar, A. Ullah, H. Razzaq, K.M. Zia, X. Liu, Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with Polyaniline-Graphene oxide nano fillers for treatment of textile effluents, J. Hazard. Mater. 403 (2021) 123587. https://doi.org/10.1016/j.jhazmat.2020.123587
[26] K. L. Wasewar, S. Singh, S.K. Kansal, Chapter 13 – Process intensification of treatment of inorganic water pollutants, in: P. Devi, P. Singh, S.K. Kansal (Eds.), Elsevier, 2020, pp. 245-271. https://doi.org/10.1016/B978-0-12-818965-8.00013-5
[27] J.H. Kim, P.K. Park, C.H. Lee, H.H. Kwon, S. Lee, A novel hybrid system for the removal of endocrine disrupting chemicals: Nanofiltration and homogeneous catalytic oxidation, J. Memb. Sci. 312 (2008) 66-75. https://doi.org/10.1016/j.memsci.2007.12.039
[28] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, R.D.L. Oatley, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination 356 (2005) 226-254. https://doi.org/10.1016/j.desal.2014.10.043
[29] X. Li, Y. Cao, H. Yu, G. Kang, X. Jie, Z. Liu, Q. Yuan, A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization, J. Memb. Sci. 466 (2014) 82-91. https://doi.org/10.1016/j.memsci.2014.04.034
[30] Y. Li, Y. Su, Y. Dong, X. Zhao, Z. Jiang, R. Zhang, J. Zhao, Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers, Desalination 333 (2014) 59-65. https://doi.org/10.1016/j.desal.2013.11.035
[31] V. Vatanpour, S.S. Madaeni, L. Rajabi, S. Zinadini, A.A. Derakhshan, Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes, J. Memb. Sci. 401 (2012) 132-143. https://doi.org/10.1016/j.memsci.2012.01.040
[32] P. Daraei, S.S. Madaeni, N. Ghaemi, E. Salehi, M.A. Khadivi, R. Moradian, B. Astinchap, Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water, J. Memb. Sci. 415 (2012) 250-259. https://doi.org/10.1016/j.memsci.2012.05.007
[33] V. Vatanpour, M. Esmaeili, M.H.D.A Farahani, Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes, J. Memb. Sci. 466 (2014) 70-81. https://doi.org/10.1016/j.memsci.2014.04.031
[34] J. Zhu, N. Guo, Y. Zhang, L. Yu, J. Liu, Preparation and characterization of negatively charged PES nano filtration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP, J. Memb. Sci. 465 (2014) 91-99. https://doi.org/10.1016/j.memsci.2014.04.016
[35] N.N. Bui, M.L Lind, E.M.V. Hoek, J.R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, J. Memb. Sci. 385 (2011) 10-19. https://doi.org/10.1016/j.memsci.2011.08.002
[36] C. Qiu, Q.T. Nguyen, Z. Ping, Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes, J. Memb. Sci. 295 (2007) 88-94. https://doi.org/10.1016/j.memsci.2007.02.040
[37] H. Deng, Y., Xu, Q. Chen, X. Wei, B. Zhu, High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes, J. Memb. Sci. 366 (2011) 363-372. https://doi.org/10.1016/j.memsci.2010.10.029
[38] A. Linggawati, A.W. Mohammad, C.P. Leo, Effects of APTEOS content and electron beam irradiation on physical and separation properties of hybrid nylon-66 membranes, Mater. Chem. Phys. 133 (2012) 110-117. https://doi.org/10.1016/j.matchemphys.2011.12.071
[39] E.S. Kim, Q. Yu, B. Deng, Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling, Appl. Surf. Sci. 257 (2011) 9863-9871. https://doi.org/10.1016/j.apsusc.2011.06.059
[40] S.M. Abtahi, L. Marbelia, A.Y. Gebreyohannes, P. Ahmadiannamini, C.C. Joannis, C. Albasi, W.M., De, V.I.F.J. Vankelecom, Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater, Sep. Purif. Technol. 209 (2019) 470-481. https://doi.org/10.1016/j.seppur.2018.07.071
[41] S. Zarghami, T. Mohammadi, M. Sadrzadeh, B. Vander, Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment, Sci. Total Environ. 711 (2020) 134951. https://doi.org/10.1016/j.scitotenv.2019.134951
[42] J. Gao, K.Y. Wang, T.S. Chung, Design of nanofiltration (NF) hollow fiber membranes made from functionalized bore fluids containing polyethyleneimine (PEI) for heavy metal removal, J. Memb. Sci. 603 (2020) 118022. https://doi.org/10.1016/j.memsci.2020.118022
[43] Z.L.E. Zhang, W. Zhang, Membranes for Environmental Applications, Springer Nature, Switzerland, 2020. https://doi.org/10.1007/978-3-030-33978-4
[44] H. Liu, J. Wang, Treatment of radioactive wastewater using direct contact membrane distillation, J. Hazard. Mater. 261 (2013) 307-315. https://doi.org/10.1016/j.jhazmat.2013.07.045
[45] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination 287 (2012) 2-18. https://doi.org/10.1016/j.desal.2011.08.027
[46] M. Gryta, K. Karakulski, A.W. Morawski, Purification of oily wastewater by hybrid UF/MD, Water Res. 35 (2001) 3665-3669. https://doi.org/10.1016/S0043-1354(01)00083-5
[47] A. Criscuoli, E. Drioli, Energetic and exergetic analysis of an integrated membrane desalination system, Desalination 124 (1999) 243-249. https://doi.org/10.1016/S0011-9164(99)00109-5
[48] H. Kurokawa, T. Sawa, Heat recovery characteristics of membrane distillation, Heat Transfer‐Japanese Research: Co‐sponsored by the Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME 25 (1996) 135-150. https://doi.org/10.1002/(SICI)1520-6556(1996)25:3<135::AID-HTJ1>3.0.CO;2-Y
[49] G.J. Blanco, R.L. Garcia, M.I. Martin, Seawater desalination by an innovative solar-powered membrane distillation system: the MEDESOL project, Desalination 246 (2009) 567-576. https://doi.org/10.1016/j.desal.2008.12.005
[50] A. Alkhudhiri, N. Hilal, Membrane distillation-Principles, applications, configurations, design, and implementation, Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-815818-0.00003-5
[51] J. Kim, H. Kwon, S. Lee, S. Lee, Hong, Membrane distillation (MD) integrated with crystallization (MDC) for shale gas produced water (SGPW) treatment Desalination, 403 (2017) 172-178. https://doi.org/10.1016/j.desal.2016.07.045
[52] J. Kim, J. Kim, S. Hong, Recovery of water and minerals from shale gas produced water by membrane distillation crystallization Water Res., 129 (2018) 447-459. https://doi.org/10.1016/j.watres.2017.11.017
[53] S. Adnan, M. Hoang, H. Wang, Z. Xie, Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material, Desalination 284 (2012) 297-308. https://doi.org/10.1016/j.desal.2011.09.015
[54] Z. Wang, D. Hou, S. Lin, Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation, Environ. Sci. Technol. 5 (2016) 3866-3874. https://doi.org/10.1021/acs.est.5b05976
[55] J. Lee, C. Boo, W.H. Ryu, A.D. Taylor, M. Elimelech, Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold, ACS Appl. Mater. Interfaces. 8 (2016) 11154-11161. https://doi.org/10.1021/acsami.6b02419
[56] Z. Wang, S. Lin, Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability, Water Res. 112 (2017) 38-47. https://doi.org/10.1016/j.watres.2017.01.022
[57] M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura, Study on the effect of a non-solvent additive on the morphology and performance of ultrafiltration hollow-fiber membranes, Desalination 148 (2002) 321-327. https://doi.org/10.1016/S0011-9164(02)00724-5
[58] D. Hou, G. Dai, H. Fan, J. Wang, C. Zhao, H. Huang, Effects of calcium carbonate nano-particles on the properties of PVDF/nonwoven fabric flat-sheet composite membranes for direct contact membrane distillation, Desalination 347 (2014) 25-33. https://doi.org/10.1016/j.desal.2014.05.028
[59] J.E. Efome, M. Baghbanzadeh, D. Rana, T. Matsuura, C.Q. Lan, Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation, Desalination 373 (2015) 47-57. https://doi.org/10.1016/j.desal.2015.07.002
[60] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Water-in-Oil Emulsions with High Flux, Adv. Mater., 25 (2013) 2071-2076. https://doi.org/10.1002/adma.201204520
[61] K.G. Zakrzewska, Nuclear Waste Processing: Pressure-Driven Membrane Processes, in: E. Drioli, L. Giorno (Eds.), Encycl. Membr., Springer, Berlin, 2015, pp.1-3.
[62] C. Wu, W. Tang, J. Zhang, S. Liu, Z. Wang, X. Wang, X. Lu, Preparation of super-hydrophobic PVDF membrane for MD purpose via hydroxyl induced crystallization-phase inversion, J. Memb. Sci. 543 (2017) 288-300. https://doi.org/10.1016/j.memsci.2017.08.066
[63] R. Zhang, W. Tang, H. Gao, C. Wu, S. Gray, X. Lu, In-situ construction of superhydrophobic PVDF membrane via NaCl-H2O induced polymer incipient gelation for membrane distillation, Sep. Purif. Technol. 274 (2021) 117762. https://doi.org/10.1016/j.seppur.2020.117762
[64] J. Li, L.F. Ren, H.S. Zhou, J. Yang, J. Shao, Y. He, Fabrication of super hydrophobic PDTS-ZnO-PVDF membrane and its anti-wetting analysis in direct contact membrane distillation (DCMD) applications, J. Memb. Sci. 620 (2021) 118924. https://doi.org/10.1016/j.memsci.2020.118924
[65] Z. Ding, Z. Liu, C. Xiao, Excellent performance of novel superhydrophobic composite hollow membrane in the vacuum membrane distillation, Sep. Purif. Technol. 268 (2021) 118603. https://doi.org/10.1016/j.seppur.2021.118603
[66] S. S. Mosadegh. D. Rodrigue, J. Brisson, M.C. Iliuta, Wetting phenomenon in membrane contactors – Causes and prevention, J. Memb. Sci. 452 (2014) 332-353. https://doi.org/10.1016/j.memsci.2013.09.055
[67] A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, R.E., Designing Superoleophobic Surfaces, Science 318 (2007) 1618-1622. https://doi.org/10.1126/science.1148326
[68] C. Boo, J. Lee, M. Elimelech, Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation, Environ. Sci. Technol. 50 (2016) 12275-12282. https://doi.org/10.1021/acs.est.6b03882
[69] P.S. Brown, B. Bhushan, Durable, superoleophobic polymer–nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation, Sci. Rep. 6 (2016) 21048. https://doi.org/10.1038/srep21048
[70] L.H. Chen, A. Huang, Y.R. Chen, C.H. Chen, C.C. Hsu, F.Y. Tsai, K.L. Tung, Omniphobic membranes for direct contact membrane distillation: Effective deposition of zinc oxide nanoparticles, Desalination 428 (2018) 255-263. https://doi.org/10.1016/j.desal.2017.11.029
[71] I. Daou, O. Zegaoui, A. Elghazouani, Physicochemical and photocatalytic properties of the ZnO particles synthesized by two different methods using three different precursors, Comptes Rendus Chim. 20 (2017) 47-54. https://doi.org/10.1016/j.crci.2016.04.003
[72] G. Perry, Y. Coffinier, V. Thomy, R. Boukherroub, Sliding Droplets on Superomniphobic Zinc Oxide Nanostructures, Langmuir 28 (2017) 389-395. https://doi.org/10.1021/la2035032
[73] R. Dufour, G. Perry, M. Harnois, Y. Coffinier, V. Thomy, V. Senez, R. Boukherroub, From micro to nano reentrant structures: hysteresis on superomniphobic surfaces, Colloid Polym. Sci. 291 (2013) 409-415. https://doi.org/10.1007/s00396-012-2750-7