Porous Membrane and their Applications


Porous Membrane and their Applications

S.K. Swain, A. Sahoo, N. Sarkar

Porous membranes have several uses in separation technology. This chapter basically explored various fabrication routes of different types of porous membranes and their applications in industrial and biomedical fields. The urgent need of a low cost perfect membrane needs to be optimised with good mechanical strength, chemical resistance, and thermal stability. This chapter focuses on producing porous polymeric/ceramic membranes with nano/submicron holes using block copolymer self-assembly, track etching, 3D printing, nanoimprinting, lithography, and electrospinning, etc. Porous polymeric/ceramic membranes are used in separation techniques in various industries, drug administration, bioseparation, and biosensing. The effect of membrane material, pore shape and size towards the membrane performance for various technological challenges are thoroughly discussed.

Porous Membranes, Polymeric Membrane, Ceramic Membrane, Separation Techniques, Industrial Application, Biomedical Applications

Published online 2/5/2022, 31 pages

Citation: S.K. Swain, A. Sahoo, N. Sarkar, Porous Membrane and their Applications, Materials Research Foundations, Vol. 120, pp 184-213, 2022

DOI: https://doi.org/10.21741/9781644901816-6

Part of the book on Advanced Functional Membranes

[1] F. Bazzarelli, L. Giorno, E. Piacentini, & E. Drioli, Porous membranes. Encyclopaedia of Membranes; Drioli, E., Giorno, L., Eds, (2015) 1-3. https://doi.org/10.1007/978-3-642-40872-4_2226-1
[2] A. Shiohara, B. Prieto-Simon, & N. H. Voelcker, Porous polymeric membranes: fabrication techniques and biomedical applications. J. Mater. Chem. B, 9 (2021) 2129-2154. https://doi.org/10.1039/D0TB01727B
[3] J. Lee, S. Park, K. Choi, & G. Kim, Nano-scale patterning using the roll typed UV-nanoimprint lithography tool. Microelectron. Eng., 85 (2008) 861-865. https://doi.org/10.1016/j.mee.2007.12.059
[4] A. Pandey, S. Tzadka, D. Yehuda, & M. Schvartzman, Soft thermal nanoimprint with a 10 nm feature size, Soft Matter, 15 (2019) 2897-2904. https://doi.org/10.1039/C8SM02590H
[5] J. Choi, Z. Jia, & S. Park, Fabrication of polymeric dual-scale nanoimprint molds using a polymer stencil membrane, Microelectro. Eng., 199(2018) 101-105. https://doi.org/10.1016/j.mee.2018.07.009
[6] M. H. Lee, M. D. Huntington, W. Zhou, J. C. Yang, & T. W. Odom, Programmable soft lithography: solvent-assisted nanoscale embossing, Nano lett., 11(2011), 311-315. https://doi.org/10.1021/nl102206x
[7] M. Vogler, S. Wiedenberg, M. Mühlberger, I. Bergmair, T. Glinsner, H. Schmidt, & G. Grützner, Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography. Microelectron. Eng., 84 (2007) 984-988. https://doi.org/10.1016/j.mee.2007.01.184
[8] T. Mäkelä, M. Kainlauri, P. Willberg-Keyriläinen, T. Tammelin, & U. Forsström, Fabrication of micropillars on nanocellulose films using a roll-to-roll nanoimprinting method, Microelectron. Eng., 163 (2016) 1-6. https://doi.org/10.1016/j.mee.2016.05.023
[9] T. Yanagishita , K. Nishio, & H. Masuda , Nano imprinting using Ni molds prepared from highly ordered anodic porous alumina templates, Jpn. J. Appl. Phys., 45 (2006) L804. https://doi.org/10.1143/JJAP.45.L804
[10] M. Tibbe, J. Loessberg-Zahl, M. P. Do Carmo, M. van der Helm, , J. Bomer, A. Van Den Berg,… & J. Eijkel, Large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes, Nanoscale, 10 (2018) 7711-7718. https://doi.org/10.1039/C7NR09658E
[11] N. Kooy, K. Mohamed, L. T. Pin, & O. S. Guan, A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett., 9 (2014) 1-13. https://doi.org/10.1186/1556-276X-9-320
[12] K. J. Sohn, J. H. Park, D. E. Lee, H. I. Jang, & W. I. Lee, Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film, J. Micromech. Microeng, 23 (2013) 035024. https://doi.org/10.1088/0960-1317/23/3/035024
[13] X. Tan, & D. Rodrigue, A review on porous polymeric membrane preparation. Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene, Polymers, 11(2019) 1310. https://doi.org/10.3390/polym11081310
[14] P. Apel, Track etching technique in membrane technology, Radiat. Meas., 34 (2001) 559-566. https://doi.org/10.1016/S1350-4487(01)00228-1
[15] M. E. Toimil-Molares, Characterization and properties of micro-and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology, Beilstein J. Nanotechnol., 3 (2012) 860-883. https://doi.org/10.3762/bjnano.3.97
[16] B. S. Lalia, V. Kochkodan, R. Hashaikeh, & N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship, Desalination, 326 (2013) 77-95. https://doi.org/10.1016/j.desal.2013.06.016
[17] M. Tibbe, J. Loessberg-Zahl, M. P. Do Carmo, M. van der Helm, J. Bomer, A. Van Den Berg, & J.Eijkel, Large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes, Nanoscale, 10 (2018) 7711-7718. https://doi.org/10.1039/C7NR09658E
[18] H. Kavand, , H. van Lintel, S. BakhshiSichani, S. Bonakdar, H.Kavand, J. Koohsorkhi, & P. Renaud, Cell-imprint surface modification by contact photolithography-based approaches: Direct-cell photolithography and optical soft lithography using PDMS cell imprints, ACS Appl. Mater. Interfaces, 11 (2019) 10559-10566. https://doi.org/10.1021/acsami.9b00523
[19] T. Yanagishita, K. Nishio, & H. Masuda, Polymer through-hole membranes with high aspect ratios from anodic porous alumina templates, Jpn. J. Appl. Phys., 45 (2016) L1133. https://doi.org/10.1143/JJAP.45.L1133
[20] F.Tang, Z. Shao, M. Ni, Y. Cui, C. Yuan, & H. Ge, Fabrication of perforated polyethylene microfiltration membranes for circulating tumor cells separation by thermal nanoimprint method, Appl. Phys. A, 125 (2019) 1-7. https://doi.org/10.1007/s00339-018-2343-5
[21] J. J. Kim, K. W. Bong, E. Reátegui, D. Irimia, & P. S. Doyle, Porous microwells for geometry-selective, large-scale microparticle arrays, Nat. Mater., 16 (2017) 139-146. https://doi.org/10.1038/nmat4747
[22] H. Im, J. N. Sutherland, J. A. Maynard, & S. H. Oh, Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal. Chem., 84 (2012) 1941-1947. https://doi.org/10.1021/ac300070t
[23] P. R. Sundararajan, Physical aspects of polymer self-assembly. John Wiley & Sons.(2016). https://doi.org/10.1002/9781118994405
[24] A. Stein, & R. C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond, Curr. Opin. Solid State Mater. Sci., 5 (2001) 553-564. https://doi.org/10.1016/S1359-0286(01)00022-5
[25] Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, & D. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed., 44 (2005) 7053-7059. https://doi.org/10.1002/anie.200501561
[26] Y. Meng, D.Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, & D. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic− organic self-assembly. Chem. of Mater., 18 (2006) 4447-4464. https://doi.org/10.1021/cm060921u
[27] C. Wang, T. M. Wang, & Q. H. Wang, Ultralow-dielectric, nanoporous poly (methyl silsesquioxanes) films templated by a self-assembled block copolymer upon solvent annealing, J. Polym. Res., 26(2019) 1-10. https://doi.org/10.1007/s10965-018-1650-z
[28] W. A. Phillip, B. O’Neill, M. Rodwogin, M. A. Hillmyer, & E. L. Cussler, Self-assembled block copolymer thin films as water filtration membranes. ACS Appl. Mater. Interfaces, 2 (2010) 847-853. https://doi.org/10.1021/am900882t
[29] K. V. Peinemann, V.Abetz, & P. F. Simon, Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater., 6(2007) 992-996. https://doi.org/10.1038/nmat2038
[30] Z. X. Low, Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe, & D. A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, J. Membr. Sci., 523(2017) 596-613. https://doi.org/10.1016/j.memsci.2016.10.006
[31] N. A. Chartrain, C. B. Williams, & A. R. Whittington, A review on fabricating tissue scaffolds using vat photopolymerization. Actabiomaterialia, 74(2018) 90-111. https://doi.org/10.1016/j.actbio.2018.05.010
[32] J. A. Lewis, & G. M. Gratson, Direct writing in three dimensions. Mater. Today., 7 (2004) 32-39. https://doi.org/10.1016/S1369-7021(04)00344-X
[33] M. N. Jahangir, K. M. M. Billah, Y.Lin, D. A. Roberson, R. B. Wicker, & D. Espalin, Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber, Addit. Manuf., 28 (2019) 354-364. https://doi.org/10.1016/j.addma.2019.05.019
[34] D. X. Luong, A. K. Subramanian, G. A. L. Silva, J. Yoon, S. Cofer, K. Yang, & J. M. Tour, Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater., 30(2018) 1707416. https://doi.org/10.1002/adma.201707416
[35] R. D. Farahani, M. Dubé, & D. Therriault, Three‐dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv. Mater., 28 (2016) 5794-5821. https://doi.org/10.1002/adma.201506215
[36] S. Remanan, , M. Sharma, S. Bose, & N. C. Das, Recent advances in preparation of porous polymeric membranes by unique techniques and mitigation of fouling through surface modification. Chem. Select., 3(2018) 609-633. https://doi.org/10.1002/slct.201702503
[37] P. Arribas, , M. Khayet, M. C. García-Payo, & L. Gil, Self-sustained electro-spun polysulfone nano-fibrous membranes and their surface modification by interfacial polymerization for micro-and ultra-filtration., Sep. Purif. Technol., 138(2014) 118-129. https://doi.org/10.1016/j.seppur.2014.10.010
[38] S. S. Ray, S. S. Chen, N. C. Nguyen, & H. T. Nguyen, Electrospinning: A versatile fabrication technique for nanofibrous membranes for use in desalination. In Nanoscale Materials in Water Purification, Elsevier. (2019) 247-273. https://doi.org/10.1016/B978-0-12-813926-4.00014-8
[39] C. Mituppatham, , M. Nithitanakul, & P. Supaphol, Ultrafine electrospun polyamide6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol. Chem. Phy., 205 (2004) 2327-2338. https://doi.org/10.1002/macp.200400225
[40] C.Van Do, T. T. T. Nguyen, & J. S. Park, Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics, Sol. Energy Mater. Sol. Cells, 104 (2012) 131-139. https://doi.org/10.1016/j.solmat.2012.04.029
[41] T. A. M. Valente, D. M. Silva, P. S. Gomes, M. H. Fernandes, J. D. Santos, & V. Sencadas, Effect of sterilization methods on electrospun poly (lactic acid)(PLA) fiber alignment for biomedical applications. ACS Appl. Mater. Interfaces, 8 (2016) 3241-3249. https://doi.org/10.1021/acsami.5b10869
[42] S. Luque, D. Gómez, and J. R. Álvarez. “Industrial applications of porous ceramic membranes (pressure‐driven processes).” Membr. Sci. Technol., 13 (2008) 177-216. https://doi.org/10.1016/S0927-5193(07)13006-0
[43] P. B. Belibi, M. M. G. Nguemtchouin, M. Rivallin, J. N. Nsami, J. Sieliechi, S. Cerneaux, M. B. Ngassoum, and M. Cretin. “Microfiltration ceramic membranes from local Cameroonian clay applicable to water treatment.” Ceram. Int. 41 (2015) 2752-2759. https://doi.org/10.1016/j.ceramint.2014.10.090
[44] B. Das, B. Chakrabarty, and P.Barkakati, Preparation and characterization of novel ceramic membranes for micro-filtration applications. Ceram. Int., 13 (2016) 14326-14333. https://doi.org/10.1016/j.ceramint.2016.06.125
[45] H. Guo, S. Zhao, X. Wu, and H. Qi., Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration, Microporous and Mesoporous Mater., 260 (2018) 125-131. https://doi.org/10.1016/j.micromeso.2016.03.011
[46] Zi. Yang, Y. Zhou, Z. Feng, X. Rui, T. Zhang, and Z. Zhang. “A review on reverse osmosis and nanofiltration membranes for water purification.” Polymers., 8 (2019) 1252. https://doi.org/10.3390/polym11081252
[47] M. W. Hakami, A. Alkhudhiri, S. Al-Batty, M. P. Zacharof, J. Maddy, and N. Hilal. “Ceramic microfiltration membranes in wastewater treatment: Filtration behavior, fouling and prevention.” Membranes., 9 (2020) 248. https://doi.org/10.3390/membranes10090248
[48] M. Cheryan, & N. Rajagopalan, Membrane processing of oily streams. Wastewater treatment and waste reduction, J.Membr. Sci., 151(1998) 13-28. https://doi.org/10.1016/S0376-7388(98)00190-2
[49] R. Bhave, Inorganic Membranes Synthesis, Characteristics and Applications: Synthesis, characteristics, and applications. Springer Science & Business Media, 2012.
[50] N. A. Ahmad, P. S. Goh, Z. A. Karim, & A. F. Ismail, Thin film composite membrane for oily waste water treatment: Recent advances and challenges, Membranes, 8 (2018) 86. https://doi.org/10.3390/membranes8040086
[51] R. Sondhi, and R. Bhave, Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes. J. Membr. Sci 186 (2001) 41–52. https://doi.org/10.1016/S0376-7388(00)00663-3
[52] J. Finley, Ceramic membranes: A robust filtration alternative. Filtr. Sep. 42(2005) 34–37. https://doi.org/10.1016/S0015-1882(05)70695-9
[53] R. Sondhi, R. Bhave, and L. Jung, Applications and benefits of ceramic membranes. Membr. Technol. 11(2003) 5–8. https://doi.org/10.1016/S0958-2118(03)11016-6
[54] M. B. Hägg, & L. Deng, Membranes in gas separation. Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, (2015), 143-180
[55] Hilliard Hilco Division Technical Bulletin: Ceramic Membrane Crossflow Liquid Filtration System CMS-3. (2005). THC-500-10/05
[56] M. Ventra, E. Stephane, and R. H. James, eds. Introduction to nanoscale science and technology. Springer Science & Business Media, 2006
[57] R. Ghosh, Protein Bioseparation Using Ultrafiltration: Theory, Applications and New Developments. Imperial College Press; London: 2002. https://doi.org/10.1142/p257
[58] W. H. Fissell, H.D. Humesa, A.J. Fleischmanb, S. Roy, Dialysis and Nanotechnology: Now, 10 Years, or Never? Blood Purifi., 25 (2007) 1. https://doi.org/10.1159/000096391
[59] M. Nishizawa, V.P. Menon, C.R. Martin, Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity. Science., 268 (1995), 700-702. https://doi.org/10.1126/science.268.5211.700
[60] Q. Li, G. Luo, J. Feng, Q. Zhou, L. Zhang, Y. Zu, Amperometric Detection of Glucose with Glucose Oxidase Absorbed on Porous Nanocrystalline Ti02 Film. Electroanalysis., 13(2001), 413 416. https://doi.org/10.1002/1521-4109(200104)13:5<413::AID-ELAN413>3.0.CO;2-I
[61] S.P. Singh, S.K. Arya, P. Pandey, B.D. Malhotra, S. Saha, K. Sreenivas, V. Gupta, Cholesterol Biosensor Based on RF Sputtered Zinc Oxide Nanoporous Thin Film. App. Phys. Lett. 91 (2007) 1-3. https://doi.org/10.1063/1.2768302
[62] S. Joo, S. Park, T.D. Chung, H.C. Kim, Integration of a Nanoporous Platinum Thin Film into a Microfluidic System for Non-enzymatic Electrochemical Glucose, Sensing. Anal., 23 (2007) 277-281. https://doi.org/10.2116/analsci.23.277
[63] H. Bayley, B.S. Cremer, Stochastic Sensors Inspired by Biology. Nature. 413 (2001) 226-230. https://doi.org/10.1038/35093038
[64] J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proc. Natl. Acad. Sci., 1996. https://doi.org/10.1073/pnas.93.24.13770
[65] M.J. Kim, M. Wanunu, D.C. Bell, A. Meller, Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis. Adv. Mater. Dec. 2006. https://doi.org/10.1002/adma.200601191
[66] I. Tsujino, J. Ako, Y. Honda, P. J. Fitzgera, Drug Delivery Via Nano- Micro and Macroporous Coronary Stent Surfaces. Expert Opin. Drug Deliv., 4 (2007) 287-295. https://doi.org/10.1517/17425247.4.3.287
[67] T. A. Desai, S. Sadhana, J. W. Robbie, B. Anthony, C. Michael, J. Shapiro, T. West, “Nanoporous implants for controlled drug delivery.” In BioMEMS and Biomedical Nanotechnology, pp. 263-286. Springer, Boston, MA, 2006. https://doi.org/10.1007/978-0-387-25844-7_15
[68] T. A. Desai, W. H.Chu, J. K. Tu, G. M. Beattie, A. Hayek, M. Ferrari, Microfabricated immunoisolating biocapsules, Biotechnol. Bioeng. 57 (1998) 118-120. https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1<118::AID-BIT14>3.0.CO;2-G
[69] R. E. Orosz, S. Gupta, M. Hassink, M. Abde1-Ra1man, L. Moldovan, N. I. Moldovan, Delivery of Antiangiogenic and Antioxidant Drugs of Ophthalmic Interest through a Nanoporous Inorganic Filter. Mol. Vis. 10 (2004) 555-565.