Self-Assembled Membranes and their Applications

$30.00

Self-Assembled Membranes and their Applications

Bhushan Thipe and Ravi Kumar Pujala

Self-assembled membranes have gained a lot of attention in the scientific community. They offer a simple and cheap way to form membranes that serves specific purposes like water filtration, drug delivery, anti-glare coatings, dielectrics, scaffold tissue engineering, etc. Polymers are the most popular choice for making self-assembled membranes, however there are other available options like proteins, small molecules, etc. Each new method/material offers certain advantages and disadvantages. Polymer membranes are strong and durable, but offer low porosity. Other materials like proteins degrade quickly. Hybrid materials are thus synthesized to combine the advantageous properties of materials and form self-assembled membranes. It is difficult to obtain membranes that are thin, sturdy and long lasting. New materials are being synthesized. However, materials that already exist can also serve well enough. A different perspective is needed to look into current materials and put them into good use. Self-assembled membranes offer a lot of potential uses and a lot of research is being pursued in this regard.

Keywords
Self-Assembled, Polymers, Copolymers, Proteins, Phospholipids, Porous, Non-Porous, Mesh

Published online 2/5/2022, 33 pages

Citation: Bhushan Thipe and Ravi Kumar Pujala, Self-Assembled Membranes and their Applications, Materials Research Foundations, Vol. 120, pp 151-183, 2022

DOI: https://doi.org/10.21741/9781644901816-5

Part of the book on Advanced Functional Membranes

References
[1] P.D. William Gahl, M.D., Cell Membrane (Plasma Membrane), (n.d.). https://www.genome.gov/genetics-glossary/Cell-Membrane (accessed July 12, 2021).
[2] T.E. of E. Brittanica, Cell membrane, (n.d.). https://www.britannica.com/science/cell-membrane (accessed July 21, 2021).
[3] J. Feher, 2.7 – Osmosis and Osmotic Pressure, in: J. Feher (Ed.), Quant. Hum. Physiol. (Second Ed., Second Edi, Academic Press, Boston, 2017: pp. 182–198. https://doi.org/https://doi.org/10.1016/B978-0-12-800883-6.00017-3.
[4] What is Reverse Osmosis?, (n.d.). https://puretecwater.com/reverse-osmosis/what-is-reverse-osmosis (accessed July 21, 2021).
[5] Plagiomnium affine laminazellen.jpeg, Wikimedia Commons. (n.d.). https://commons.wikimedia.org/w/index.php?curid=1350193 (accessed July 21, 2021).
[6] Is UV Required With Reverse Osmosis (RO)?, (n.d.). https://waterpurificationguide.com/is-uv-required-with-reverse-osmosis-ro/.
[7] A. Ahuchaogu, J. Chukwu, A. Obike, C. Igara, I. Nnorom, J. Bull, O. Echeme, Reverse Osmosis Technology, its Applications and Nano-Enabled Membrane, 5 (2018). https://doi.org/10.20431/2349-0403.0502005.
[8] A. Green, Dialysis: principles and treatment options, (n.d.). https://pharmaceutical-journal.com/article/ld/dialysis-principles-and-treatment-options (accessed July 23, 2021).
[9] National Institute of Diabetes and Digestive and Kidney Diseases, (n.d.). https://www.niddk.nih.gov/ (accessed July 23, 2021).
[10] M. Keshavarz Hedayati, M. Elbahri, Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review, Materials (Basel). 9 (2016). https://doi.org/10.3390/ma9060497.
[11] J. Lawrenson, C. Hull, L. Downie, The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature, Ophthalmic Physiol. Opt. 37 (2017) 644–654. https://doi.org/10.1111/opo.12406.
[12] N. Al-Dahoudi, H. Bisht, C. Göbbert, T. Krajewski, M. Aegerter, Transparent Conducting, Anti-static and Anti-static–Anti-glare Coatings on Plastic Substrates, Thin Solid Films. 392 (2001) 299–304. https://doi.org/10.1016/S0040-6090(01)01047-1.
[13] K.K. Ho, W. S. W., & Sirkar, Membrane Handbook, Boston, MA: Springer US, 1992.
[14] R.D.N.& S.A. Stern, Membrane Separations Technology:Principles and Applications, ELSEVIER, n.d.
[15] S.P. Nunes, Block Copolymer Membranes for Aqueous Solution Applications, Macromolecules. 49 (2016) 2905–2916. https://doi.org/10.1021/acs.macromol.5b02579.
[16] M. Ulbricht, Advanced functional polymer membranes, Polymer (Guildf). 47 (2006) 2217–2262. https://doi.org/https://doi.org/10.1016/j.polymer.2006.01.084.
[17] I. Pinnau, B.D. Freeman, Formation and Modification of Polymeric Membranes: Overview, in: Membr. Form. Modif., American Chemical Society, 1999: p. 1. https://doi.org/doi:10.1021/bk-2000-0744.ch001.
[18] H. Feng, X. Lu, W. Wang, N.-G. Kang, J.W. Mays, Block Copolymers: Synthesis, Self-Assembly, and Applications, Polymers (Basel). 9 (2017). https://doi.org/10.3390/polym9100494.
[19] Y. Wang, F. Li, An Emerging Pore-Making Strategy: Confined Swelling-Induced Pore Generation in Block Copolymer Materials, Adv. Mater. 23 (2011) 2134–2148. https://doi.org/https://doi.org/10.1002/adma.201004022.
[20] M.W. Matsen, F.S. Bates, Unifying Weak- and Strong-Segregation Block Copolymer Theories, Macromolecules. 29 (1996) 1091–1098. https://doi.org/10.1021/ma951138i.
[21] A. Mecke, C. Dittrich, W. Meier, Biomimetic membranes designed from amphiphilic block copolymers, Soft Matter. 2 (2006) 751–759. https://doi.org/10.1039/B605165K.
[22] A.K. Khandpur, S. Foerster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K. Almdal, K. Mortensen, Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition, Macromolecules. 28 (1995) 8796–8806. https://doi.org/10.1021/ma00130a012.
[23] L.M. Pitet, M.A. Amendt, M.A. Hillmyer, Nanoporous Linear Polyethylene from a Block Polymer Precursor, J. Am. Chem. Soc. 132 (2010) 8230–8231. https://doi.org/10.1021/ja100985d.
[24] E.J. Kappert, M.J.T. Raaijmakers, K. Tempelman, F.P. Cuperus, W. Ogieglo, N.E. Benes, Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset, J. Memb. Sci. 569 (2019) 177–199. https://doi.org/https://doi.org/10.1016/j.memsci.2018.09.059.
[25] K.-V. Peinemann, V. Abetz, P.F.W. Simon, Asymmetric superstructure formed in a block copolymer via phase separation, Nat. Mater. 6 (2007) 992–996. https://doi.org/10.1038/nmat2038.
[26] L. Schulte, A. Grydgaard, M.R. Jakobsen, P.P. Szewczykowski, F. Guo, M.E. Vigild, R.H. Berg, S. Ndoni, Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers, Polymer (Guildf). 52 (2011) 422–429. https://doi.org/https://doi.org/10.1016/j.polymer.2010.11.038.
[27] L. Li, L. Schulte, L.D. Clausen, K.M. Hansen, G.E. Jonsson, S. Ndoni, Gyroid Nanoporous Membranes with Tunable Permeability, ACS Nano. 5 (2011) 7754–7766. https://doi.org/10.1021/nn200610r.
[28] H.-Y. Hsueh, H.-Y. Chen, M.-S. She, C.-K. Chen, R.-M. Ho, S. Gwo, H. Hasegawa, E.L. Thomas, Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating, Nano Lett. 10 (2010) 4994–5000. https://doi.org/10.1021/nl103104w.
[29] P. Zavala-Rivera, K. Channon, V. Nguyen, E. Sivaniah, D. Kabra, R.H. Friend, S.K. Nataraj, S.A. Al-Muhtaseb, A. Hexemer, M.E. Calvo, H. Miguez, Collective osmotic shock in ordered materials, Nat. Mater. 11 (2012) 53–57. https://doi.org/10.1038/nmat3179.
[30] S.M. Peker, Ş.Ş. Helvacı, H.B. Yener, B. İkizler, A. Alparslan, eds., 1 – The Particulate Phase: A Voyage from the Molecule to the Granule, in: Solid-Liquid Two Phase Flow, Elsevier, Amsterdam, 2008: pp. 1–70. https://doi.org/https://doi.org/10.1016/B978-044452237-5.50003-5.
[31] I. Barandiaran, A. Cappelletti, M. Strumia, A. Eceiza, G. Kortaberria, Generation of nanocomposites based on (PMMA-b-PCL)-grafted Fe2O3 nanoparticles and PS-b-PCL block copolymer, Eur. Polym. J. 58 (2014) 226–232. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2014.06.022.
[32] J.S. Lee, J. Feijen, Polymersomes for drug delivery: Design, formation and characterization, J. Control. Release. 161 (2012) 473–483. https://doi.org/https://doi.org/10.1016/j.jconrel.2011.10.005.
[33] T. Anajafi, S. Mallik, Polymersome-based drug-delivery strategies for cancer therapeutics, Ther. Deliv. 6 (2015) 521–534. https://doi.org/10.4155/tde.14.125.
[34] K. Strebhardt, A. Ullrich, Paul Ehrlich’s magic bullet concept: 100 years of progress, Nat. Rev. Cancer. 8 (2008) 473–480. https://doi.org/10.1038/nrc2394.
[35] D.E. Discher, F. Ahmed, POLYMERSOMES, Annu. Rev. Biomed. Eng. 8 (2006) 323–341. https://doi.org/10.1146/annurev.bioeng.8.061505.095838.
[36] M.C. García, 13 – Stimuli-responsive polymersomes for drug delivery applications, in: A.S.H. Makhlouf, N.Y. Abu-Thabit (Eds.), Stimuli Responsive Polym. Nanocarriers Drug Deliv. Appl., Woodhead Publishing, 2019: pp. 345–392. https://doi.org/https://doi.org/10.1016/B978-0-08-101995-5.00019-2.
[37] S.P. Nunes, A.R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, U. Vainio, K.-V. Peinemann, Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly, ACS Nano. 5 (2011) 3516–3522. https://doi.org/10.1021/nn200484v.
[38] J. Cheng, Y. Zhang, P. Gopalakrishnakone, N. Chen, Use of the Upside-Down Method to Prepare Porous Polymer Films with Tunable Surface Pore Sizes, Langmuir. 25 (2009) 51–54. https://doi.org/10.1021/la8035264.
[39] Polystyrene Microsphere 0.10 µm, (n.d.). https://www.histoline.com/en/00876-15.
[40] H. Yabu, Fabrication of honeycomb films by the breath figure technique and their applications, Sci. Technol. Adv. Mater. 19 (2018) 802–822. https://doi.org/10.1080/14686996.2018.1528478.
[41] Y. Dou, M. Jin, G. Zhou, L. Shui, Breath Figure Method for Construction of Honeycomb Films, Membranes (Basel). 5 (2015) 399–424. https://doi.org/10.3390/membranes5030399.
[42] J.J. Smith, I. Zharov, Ion Transport in Sulfonated Nanoporous Colloidal Films, Langmuir. 24 (2008) 2650–2654. https://doi.org/10.1021/la7013072.
[43] H. Pingle, P.-Y. Wang, H. Thissen, S. Mcarthur, P. Kingshott, Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces, Biointerphases. 10 (2015) 04A309. https://doi.org/10.1116/1.4936071.
[44] X. Peng, J. Jin, Y. Nakamura, T. Ohno, I. Ichinose, Ultrafast permeation of water through protein-based membranes, Nat. Nanotechnol. 4 (2009) 353–357. https://doi.org/10.1038/nnano.2009.90.
[45] A. Gugliuzza, M.C. Aceto, F. Macedonio, E. Drioli, Water Droplets as Template for Next-Generation Self-Assembled Poly-(etheretherketone) with Cardo Membranes, J. Phys. Chem. B. 112 (2008) 10483–10496. https://doi.org/10.1021/jp802130u.
[46] J. Russell, Y. Lin, A. Böker, L. Su, P. Carl, H. Zettl, J. He, K. Sill, R. Tangirala, T. Emrick, K. Littrell, P. Thiyagarajan, D. Cookson, A. Fery, Q. Wang, T. Russell, Self-Assembly and Cross-Linking of Bionanoparticles at Liquid-Liquid Interfaces, Angew. Chemie Int. Ed. 44 (2005) 2420–2426. https://doi.org/10.1002/anie.200462653.
[47] P. Arumugam, D. Patra, B. Samanta, S.S. Agasti, C. Subramani, V.M. Rotello, Self-Assembly and Cross-linking of FePt Nanoparticles at Planar and Colloidal Liquid−Liquid Interfaces, J. Am. Chem. Soc. 130 (2008) 10046–10047. https://doi.org/10.1021/ja802178s.
[48] J. He, P. Kanjanaboos, N.L. Frazer, A. Weis, X.-M. Lin, H.M. Jaeger, Fabrication and Mechanical Properties of Large-Scale Freestanding Nanoparticle Membranes, Small. 6 (2010) 1449–1456. https://doi.org/https://doi.org/10.1002/smll.201000114.
[49] J. He, X.-M. Lin, H. Chan, L. Vuković, P. Král, H.M. Jaeger, Diffusion and Filtration Properties of Self-Assembled Gold Nanocrystal Membranes, Nano Lett. 11 (2011) 2430–2435. https://doi.org/10.1021/nl200841a.
[50] S.K.M. Nalluri, B.J. Ravoo, Light-Responsive Molecular Recognition and Adhesion of Vesicles, Angew. Chemie Int. Ed. 49 (2010) 5371–5374. https://doi.org/https://doi.org/10.1002/anie.201001442.
[51] E. Krieg, H. Weissman, E. Shirman, E. Shimoni, B. Rybtchinski, A recyclable supramolecular membrane for size-selective separation of nanoparticles, Nat. Nanotechnol. 6 (2011) 141–146. https://doi.org/10.1038/nnano.2010.274.
[52] P. van Rijn, M. Tutus, C. Kathrein, L. Zhu, M. Wessling, U. Schwaneberg, A. Böker, Challenges and advances in the field of self-assembled membranes, Chem. Soc. Rev. 42 (2013) 6578–6592. https://doi.org/10.1039/C3CS60125K.
[53] D. Carvajal, R. Bitton, J.R. Mantei, Y.S. Velichko, S.I. Stupp, K.R. Shull, Physical properties of hierarchically ordered self-assembled planar and spherical membranes, Soft Matter. 6 (2010) 1816–1823. https://doi.org/10.1039/B923903K.
[54] Z. Zheng, C.T. Nottbohm, A. Turchanin, H. Muzik, A. Beyer, M. Heilemann, M. Sauer, A. Gölzhäuser, Janus Nanomembranes: A Generic Platform for Chemistry in Two Dimensions, Angew. Chemie Int. Ed. 49 (2010) 8493–8497. https://doi.org/https://doi.org/10.1002/anie.201004053.
[55] A. Onoda, K. Fukumoto, M. Arlt, M. Bocola, U. Schwaneberg, T. Hayashi, A rhodium complex-linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization, Chem. Commun. 48 (2012) 9756–9758. https://doi.org/10.1039/C2CC35165J.
[56] O. Onaca, M. Nallani, S. Ihle, A. Schenk, U. Schwaneberg, Functionalized nanocompartments (Synthosomes): Limitations and prospective applications in industrial biotechnology, Biotechnol. J. 1 (2006) 795–805. https://doi.org/https://doi.org/10.1002/biot.200600050.
[57] A. de la Escosura-Muñiz, A. Merkoçi, Nanochannels Preparation and Application in Biosensing, ACS Nano. 6 (2012) 7556–7583. https://doi.org/10.1021/nn301368z.
[58] N. Muhammad, T. Dworeck, M. Fioroni, U. Schwaneberg, Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes, J. Nanobiotechnology. 9 (2011) 8. https://doi.org/10.1186/1477-3155-9-8.
[59] A. Güven, T. Dworeck, M. Fioroni, U. Schwaneberg, Residue K556-A Light Triggerable Gatekeeper to Sterically Control Translocation in FhuA, Adv. Eng. Mater. 13 (2011) B324–B329. https://doi.org/https://doi.org/10.1002/adem.201080127.
[60] O. Onaca, P. Sarkar, D. Roccatano, T. Friedrich, B. Hauer, M. Grzelakowski, A. Güven, M. Fioroni, U. Schwaneberg, Functionalized Nanocompartments (Synthosomes) with a Reduction-Triggered Release System, Angew. Chemie Int. Ed. 47 (2008) 7029–7031. https://doi.org/https://doi.org/10.1002/anie.200801076.
[61] M.S. Kaucher, M. Peterca, A.E. Dulcey, A.J. Kim, S.A. Vinogradov, D.A. Hammer, P.A. Heiney, V. Percec, Selective Transport of Water Mediated by Porous Dendritic Dipeptides, J. Am. Chem. Soc. 129 (2007) 11698–11699. https://doi.org/10.1021/ja076066c.
[62] N.C. Mougin, P. van Rijn, H. Park, A.H.E. Müller, A. Böker, Hybrid Capsules via Self-Assembly of Thermoresponsive and Interfacially Active Bionanoparticle–Polymer Conjugates, Adv. Funct. Mater. 21 (2011) 2470–2476. https://doi.org/https://doi.org/10.1002/adfm.201002315.
[63] Langmuir Films, Nanosci. Instruments. (n.d.). https://www.nanoscience.com/techniques/langmuir-films/.
[64] P. van Rijn, N.C. Mougin, D. Franke, H. Park, A. Böker, Pickering emulsion templated soft capsules by self-assembling cross-linkable ferritin–polymer conjugates, Chem. Commun. 47 (2011) 8376–8378. https://doi.org/10.1039/C1CC12005K.
[65] Y. Yang, Z. Fang, X. Chen, W. Zhang, Y. Xie, Y. Chen, Z. Liu, W. Yuan, An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications, Front. Pharmacol. 8 (2017) 287. https://doi.org/10.3389/fphar.2017.00287.
[66] E.A. Jackson, M.A. Hillmyer, Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration, ACS Nano. 4 (2010) 3548–3553. https://doi.org/10.1021/nn1014006.
[67] V. Chimisso, V. Maffeis, D. Hürlimann, C.G. Palivan, W. Meier, Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications, Macromol. Biosci. 20 (2020) 1900257. https://doi.org/https://doi.org/10.1002/mabi.201900257.
[68] M. Pantouvaki, L. Zhao, C. Huffman, K. Vanstreels, I. Ciofi, G. Vereecke, T. Conard, Y. Ono, M. Nakajima, K. Nakatani, G.P. Beyer, M.R. Baklanov, Ultra Low-k Materials Based on Self-Assembled Organic Polymers, MRS Online Proc. Libr. 1335 (2011) 102. https://doi.org/10.1557/opl.2011.1200.
[69] M. Asadian, K.V. Chan, M. Norouzi, S. Grande, P. Cools, R. Morent, N. De Geyter, Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds, Nanomaterials. 10 (2020). https://doi.org/10.3390/nano10010119.
[70] O. Karaman, C. Celik, A. Sendemir, Self-Assembled Biomimetic Scaffolds for Bone Tissue Engineering, in: Biomed. Eng. Concepts, Methodol. Tools, Appl., 2017: pp. 476–504. https://doi.org/10.4018/978-1-5225-3158-6.ch021.