Materials and Applications for Functional Polymer Membranes

$30.00

Materials and Applications for Functional Polymer Membranes

M.M.S. Mohd Sabee, A. Rusli, N. Ahmad, Z.A. Abdul Hamid

This chapter covers an inclusive overview of the polymeric membranes with advanced functions in numerous applications such as water and gas separation, medical and emerging technologies include fuel cells, lithium-ions batteries, electroconductive, and optoelectronics. The membrane’s performance and behavior in terms of selectivity, permeability, and separation process for these applications are determined by the materials used in the membrane’s construction. Thus, in this chapter, the potential of different polymers for functional membranes are discussed including their applications based on their suitability in terms of types, fabrications, and mechanisms. For each application, the polymer membrane technology, the challenges, and the future direction are also discussed. The membrane technology is also always evolving, especially the development of functional polymer membranes for a variety of applications, so that quality of life is improved.

Keywords
Membrane, Water/Gas Separation, Medical, Fuel Cell, Lithium-ions Battery, Electric Conductive, Optoelectronic

Published online 2/5/2022, 40 pages

Citation: M.M.S. Mohd Sabee, A. Rusli, N. Ahmad, Z.A. Abdul Hamid, Materials and Applications for Functional Polymer Membranes, Materials Research Foundations, Vol. 120, pp 72-110, 2022

DOI: https://doi.org/10.21741/9781644901816-3

Part of the book on Advanced Functional Membranes

References
[1] T.A. Saleh, V.K. Gupta, An Overview of Membrane Science and Technology, Nanomater. Polym. Membr. 1 (2016) 1-23. https://doi.org/10.1016/B978-0-12-804703-3.00001-2
[2] V. Abetz, T. Brinkmann, M. Sözbilir, Fabrication and function of polymer membranes, Chem. Teach. Int. 3 (2021) 141-154. https://doi.org/10.1515/cti-2020-0023
[3] E.O. Ezugbe, S. Rathilal, Membrane Technologies in Wastewater Treatment: A Review, Membr. 10 (2020) 89. https://doi.org/10.3390/membranes10050089
[4] Z. Jiang, L. Chu, X. Wu, Z. Wang, X. Jiang, X. Ju, X. Ruan, G. He, Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China, Rev. Chem. Eng. 36 (2020) 67-105. https://doi.org/10.1515/revce-2017-0066
[5] M. Ulbricht, Advanced functional polymer membranes, Polym. 47(7) (2006) 2217-2262. https://doi.org/10.1016/j.polymer.2006.01.084
[6] J.T.E. Goh, A.R. Abdul Rahim, M.S. Masdar, L.K. Shyuan, Enhanced Performance of Polymer Electrolyte Membranes via Modification with Ionic Liquids for Fuel Cell Applications, Membr. 11 (2021) 395. https://doi.org/10.3390/membranes11060395
[7] K. Buruga, H. Song, J. Shang, N. Bolan, T.K. Jagannathan, K.H. Kim, A review on functional polymer-clay based nanocomposite membranes for treatment of water, J. Hazard. Mater. 379 (2019) 120584. https://doi.org/10.1016/j.jhazmat.2019.04.067
[8] M.B. Hägg, Gas Permeation: Permeability, Permeance, and Separation Factor, Encycl. Membr. (2016) 1-4. https://doi.org/10.1007/978-3-642-40872-4_2215-1
[9] A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application, Environ. Sci.: Water Res. Technol. 2(1) (2016) 17-42. https://doi.org/10.1039/C5EW00159E
[10] M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker, B.D. Freeman, Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities, Macromol. 50 (2017) 7809-7843. https://doi.org/10.1021/acs.macromol.7b01718
[11] P. Wang, T.S. Chung, Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring, J. Membr. Sci. 474 (2015) 39-56. https://doi.org/10.1016/j.memsci.2014.09.016
[12] D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polym. 54 (2013) 4729-4761. https://doi.org/10.1016/j.polymer.2013.05.075
[13] P. Hao, G.G. Lipscomb, The Effect of Sweep Uniformity on Gas Dehydration Module Performance, Membr. Gas Sep. (2010) 333-353. https://doi.org/10.1002/9780470665626.ch16
[14] V. Abetz, T. Brinkmann, M. Dijkstra, K. Ebert, D. Fritsch, K. Ohlrogge, D. Paul, K.V. Peinemann, S. Pereira‐Nunes, N. Scharnagl, Developments in membrane research: from material via process design to industrial application, Adv. Eng. Mater. 8 (2006) 328-358. https://doi.org/10.1002/adem.200600032
[15] F.Y.C. Huang, A. Arning, Performance Comparison between Polyvinylidene Fluoride and Polytetrafluoroethylene Hollow Fiber Membranes for Direct Contact Membrane Distillation, Membr. 9 (2019) 52. https://doi.org/10.3390/membranes9040052
[16] A. Mollahosseini, A. Abdelrasoul, A. Shoker, A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development, Mater. Chem. Phys. 248 (2020) 122911. https://doi.org/10.1016/j.matchemphys.2020.122911
[17] B. Krause, M. Storr, T. Ertl, R. Buck, H. Hildwein, R. Deppisch, H. Gohl, Polymeric membranes for medical applications, Chem. Ing. Tech. 75 (2003) 1725-1732. https://doi.org/10.1002/cite.200306149
[18] J.S. Eswari, S. Naik, A critical analysis on various technologies and functionalized materials for manufacturing dialysis membranes, Mater. Sci. Energy Technol. 3 (2020) 116-126. https://doi.org/10.1016/j.mset.2019.10.011
[19] V. Sirolli, S. Di Stante, S. Stuard, L. Di Liberato, L. Amoroso, P. Cappelli, M. Bonomini, Biocompatibility and functional performance of a polyethylene glycol acid-grafted cellulosic membrane for hemodialysis, Int. J. Artif. Org. 23 (2000) 356-364. https://doi.org/10.1177/039139880002300603
[20] N.J. Kaleekkal, A. Thanigaivelan, M. Tarun, D. Mohan, A functional PES membrane for hemodialysis – Preparation, Characterization and Biocompatibility, Chin. J. Chem. Eng. 23 (2015) 1236–1244. https://doi.org/10.1016/j.cjche.2015.04.009
[21] M.N. Zainol Abidin, P.S. Goh, A.F. Ismail, M.H.D. Othman, H. Hasbullah, N. Said, S.H. Abdul Kadir, F. Kamal, M.S. Abdullah, B.C. Ng, Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes, Mater. Sci. Eng. C 68 (2016) 540–550. https://doi.org/10.1016/j.msec.2016.06.039
[22] A.M.D. Santos, A.C. Habert, H.C. Ferraz, Development of functionalized polyetherimide/ polyvinylpyrrolidone membranes for application in hemodialysis, J. Mater. Sci.: Mater. Med. 28 (2017) 131. https://doi.org/10.1007/s10856-017-5946-z
[23] D. Kaigler, G. Avila, L. Wisner-Lynch, M.L. Nevins, M. Nevins, G. Rasperini, S.E. Lynch, W.V. Giannobile, Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration, Expert Opin. Biol. Ther. 11 (2011) 375-385. https://doi.org/10.1517/14712598.2011.554814
[24] L. Saigoa, V. Kumar, Y. Liu, J. Lim, S.H. Teoh, B.T. Goh, A pilot study: Clinical efficacy of novel polycaprolactone-tricalciumphosphate membrane for guided bone regeneration in rabbit calvarial defect model, J. Oral Maxillofac. Surg. Med. Pathol. 30 (2018) 212–219. https://doi.org/10.1016/j.ajoms.2017.12.007
[25] P. Gentile, V. Chiono, C. Tonda-Turo, A.M. Ferreira, G. Ciardelli, Polymeric membranes for guided bone regeneration, Biotechnol. J. 6 (2011) 1187–1197. https://doi.org/10.1002/biot.201100294
[26] S. Liao, W. Wang, M. Uo, S. Ohkawa, T. Akasaka, K. Tamura, F. Cui, F. Watari, A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration, Biomater. 26 (2005) 7564–7571. https://doi.org/10.1016/j.biomaterials.2005.05.050
[27] J.M. Carbonell, I.S. Martı´n, A. Santos, A. Pujol, J.D. Sanz-Moliner, J. Nart, High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review, Int. J. Oral Maxillofac. Surg. 43 (2014) 75–84. https://doi.org/10.1016/j.ijom.2013.05.017
[28] K. Fujihara, M. Kotaki, S. Ramakrishna, Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers, Biomater. 26 (2005) 4139–4147. https://doi.org/10.1016/j.biomaterials.2004.09.014
[29] L. Fu, Z. Wang, S. Dong, Y. Cai, Y. Ni, T. Zhang, L. Wang, Y. Zhou, Bilayer Poly(Lactic-co-glycolic acid)/Nano-Hydroxyapatite Membrane with Barrier Function and Osteogenesis Promotion for Guided Bone Regeneration, Mater. 10 (2017) 257. https://doi.org/10.3390/ma10030257
[30] Z.S. Haidar, Bio-inspired-functional colloidal core-shell polymeric-based nanosystems: Technology promise in tissue engineering, bioimaging and nanomedicine, Polym. 2 (2010) 323–352. https://doi.org/10.3390/polym2030323
[31] K. Zhang, M. Zhao, L. Cai, Z.K. Wang, Y.F. Sun, Q.L. Hu, Preparation of chitosan/ hydroxyapatite guided membrane used for periodontal tissue regeneration, Chin. J. Polym. Sci. 28 (2010) 555–561. https://doi.org/10.1007/s10118-010-9087-9
[32] V.C. Dumont, A.A. Mansur, S.M. Carvalho, F.G.M. Borsagli, M.M. Pereira, H.S. Mansur, Chitosan and carboxymethyl-chitosan capping ligands: effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes, Mater. Sci. Eng. C Mater. Biol. Appl. 59 (2016) 265–277. https://doi.org/10.1016/j.msec.2015.10.018
[33] A.M. Dobos, M.D. Onofrei, S. Ioan, Cellulose acetate nanocomposites with antimicrobial properties, in: V.K. Thakur, M.K. Thakur (Eds.), Eco-friendly Polymer Nanocomposites, India, 2015, pp. 367–398. https://doi.org/10.1007/978-81-322-2470-9_12
[34] S. Torgbo, P. Sukyai, Bacterial cellulose-based scaffold materials for bone tissue engineering, Appl. Mater. Today 11 (2018) 34–49. https://doi.org/10.1016/j.apmt.2018.01.004
[35] H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering, Biomater. 24 (2003) 4353–4364. https://doi.org/10.1016/S0142-9612(03)00339-9
[36] D.S. Thoma, U.W. Jung, J.Y. Park, S.P. Bienz, J. Hüsler, R.E. Jung, Bone augmentation at peri-implant dehiscence defects comparing a synthetic polyethylene glycol hydrogel matrix vs. standard guided bone regeneration techniques, Clin. Oral Implants Res. 28 (2017) 76–83. https://doi.org/10.1111/clr.12877
[37] G.I. Benic, D.S. Thoma, F. Muñoz, I.S. Martin, R.E. Jung, C.H. Hämmerle, Guided bone regeneration of peri-implant defects with particulated and block xenogenic bone substitutes, Clin. Oral Implants Res. 27 (2016) 567–576. https://doi.org/10.1111/clr.12625
[38] Z. Sheikh, S. Hasanpour, M. Glogauer, Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation, Mater. 8 (2015) 2953-2993. https://doi.org/10.3390/ma8062953
[39] S. Tamburaci, F. Tihminlioglu, Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration, J. Mater. Sci.: Mater. Med. 29 (2018) 1-14. https://doi.org/10.1007/s10856-017-6005-5
[40] C.A. Dascalu, A. Maidaniuc, A.M. Pandele, S.I. Voicu, T. Machedon-Pisu, G.E. Stan, A. Cîmpean, V. Mitran, I.V. Antoniac, F. Miculescu, Synthesis and characterization of biocompatible polymer-ceramic film structures as favorable interface in guided bone regeneration, Appl. Surf. Sci. 494 (2019) 335-352. https://doi.org/10.1016/j.apsusc.2019.07.098
[41] H.W. Toh, D.W.Y. Toong, J.C.K. Ng, V. Ow, S. Lu, L.P. Tan, P.E.H. Wong, S. Venkatraman, Y. Huang, H.Y. Ang, Polymer blends and polymer composites for cardiovascular implants, Eur. Polym. J. 146 (2021) 1102. https://doi.org/10.1016/j.eurpolymj.2020.110249
[42] M. Castilho, D. Feyen, M. Flandes-Iparraguirre, G. Hochleitner, J. Groll, P.A.F. Doevendans, T. Vermonden, K. Ito, J.P.G. Sluijter, J. Malda, Melt Electrospinning Writing of Poly-Hydroxymethylglycolideco-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering, Adv. Healthc. Mater. 6 (2017) 1700311. https://doi.org/10.1002/adhm.201700311
[43] J. Nogic, L.M. McCormick, R. Francis, N. Nerlekar, C. Jaworski, N.E.J. West, A.J. Brown, Novel bioabsorbable polymer and polymer-free metallic drug-eluting stents, J. Cardiol. 71 (2018) 435–443. https://doi.org/10.1016/j.jjcc.2017.12.007
[44] V.S. Sivasankarapillai, S.S. Das, F. Sabir, M.A. Sundaramahalingam, J.C. Colmenares, S. Prasannakumar, M. Rajan, A. Rahdar, G.Z. Kyzas, Progress in natural polymer engineered biomaterials for transdermal drug delivery systems, Mater. Today Chem. 19 (2021) 100382. https://doi.org/10.1016/j.mtchem.2020.100382
[45] G. Jeon, S.Y. Yang, J.K. Kim, Functional nanoporous membranes for drug delivery, J. Mater. Chem. 22 (2012) 14814. https://doi.org/10.1039/c2jm32430j
[46] R. Grilloa, F.V. Dias, S.M. Querobino, C. Alberto-Silva, L.F. Fracetoc, E. de Paula, D.R. de Araujo, Influence of hybrid polymeric nanoparticle/thermosensitive hydrogel systems on formulation tracking and in vitro artificial membrane permeation: A promising system for skin drug-delivery, Coll. Surf. B: Biointerfaces 174 (2019) 56–62. https://doi.org/10.1016/j.colsurfb.2018.10.063
[47] J. Wang, L. Wang, Z. Zhou, L. Lai, P. Xu, L. Liao, J. Wei, Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review, Polym. 8 (2016) 115. https://doi.org/10.3390/polym8040115
[48] K.T. Shalumon, G.J. Lai, C.H. Chen, J.P. Chen, Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core−Shell Nanofibrous Membranes, ACS Appl. Mater. Interfaces 7 (2015) 21170−21181. https://doi.org/10.1021/acsami.5b04962
[49] S.N. Jayasinghe, Bio-electrosprays and cell electrospinning: Rapidly emerging physical protocols for potential life science applications, Biotechnol. J. 6 (2007) 43–51. https://doi.org/10.12665/J63.Jayasinghe
[50] S.N. Jayasinghe, S. Irvine, J.R. McEwan, Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds, Nanomed. 2 (2007) 555–567. https://doi.org/10.2217/17435889.2.4.555
[51] P. Joly, N. Chavda, A. Eddaoudi, S.N. Jayasinghe, Bio-electrospraying and aerodynamically assisted bio-jetting whole human blood: interrogating cell surface marker integrity, Biomicrofluid. 4 (2010) 011101. https://doi.org/10.1063/1.3294083
[52] C.H. Gonzalez, S.N. Jayasinghe, P. Ferretti, Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential, F1000Res. 9 (2020) 267. https://doi.org/10.12688/f1000research.19901.1
[53] U. Siemann, Solvent cast technology – a versatile tool for thin film production, Scatt. Methods Prop. Polym. Mater. (2005) 1-14. https://doi.org/10.1007/b107336
[54] M.A. Rahman, M.A. Khan, S.M. Tareq, Preparation and characterization of polyethylene oxide (PEO)/gelatin blend for biomedical application: effect of gamma radiation, J. Appl. Polym. Sci. 117 (2010) 2075–2082. https://doi.org/10.1002/app.32034
[55] S.M. Lai, W.W. Sun, T.M. Don, Preparation and characterization of biodegradable polymer blends from poly(3-hydroxybutyrate)/poly(vinyl acetate)-modified corn starch, Polym. Eng. Sci. 55 (2015) 1321–1329. https://doi.org/10.1002/pen.24071
[56] J. Mota, N. Yu, S.G. Caridade, G.M. Luz, M.E. Gomes, R.L. Reis, J.A. Jansen, X.F. Walboomers, J.F. Mano, Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration, Acta Biomater. 8 (2012) 4173–4180. https://doi.org/10.1016/j.actbio.2012.06.040
[57] E.F. Hansen, M.R. Derrick, M.R. Schilling, The effects of solution application on some mechanical and physical properties of thermoplastic amorphous polymers used in conservation: poly(vinyl acetate)s, J. Am. Inst. Conserv. 30 (2013) 203–213. https://doi.org/10.1179/019713691806066764
[58] S. Gorgieva, T. Vuherer, V. Kokol, Autofluorescence-aided assessment of integration and μ-structuring in chitosan/gelatin bilayer membranes with rapidly mineralized interface in relevance to guided tissue regeneration, Mater. Sci. Eng. C 93 (2018) 226–241. https://doi.org/10.1016/j.msec.2018.07.077
[59] S.A. Altinkaya, Modeling of asymmetric membrane formation by a combination of dry/wet phase inversion processes, Desalin. 199 (2006) 459–460. https://doi.org/10.1016/j.desal.2006.03.200
[60] B. Khan, W. Zhan, C. Lina, Cellulose acetate (CA) hybrid membrane prepared by phase inversion method combined with chemical reaction with enhanced permeability and good anti-fouling property, J. Appl. Polym. Sci. (2020) 49556. https://doi.org/10.1002/app.49556
[61] C. Liu, W. Qiao, C. Wang, H. Wang, Y. Zhou, S. Gu, W. Xu, Y. Zhuang, J. Shi, H. Yang, Effect of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets on 3T3 cell behavior, Int. J. Biol. Macromol. 183 (2021) 2205–2214. https://doi.org/10.1016/j.ijbiomac.2021.05.197
[62] Fuel cell, Encyclopedia Britannica. https://www.britannica.com/technology/fuel-cell, 2021 (accessed 29 November 2021).
[63] M.K. Mahapatra, P. Singh, Fuel Cells: Energy Conversion Technology, Future Energy 2 (2014) 511-547. https://doi.org/10.1016/B978-0-08-099424-6.00024-7
[64] I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci. 12 (2019) 463-491. https://doi.org/10.1039/C8EE01157E
[65] Y. DongHao, Z. Zhan, A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells, J. Power Sources 231 (2013) 285-292. https://doi.org/10.1016/j.jpowsour.2013.01.009
[66] S. Hossain, A.M. Abdalla, S.N. Jamain, J. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells, Renew. Sustain. Energ. Rev. 79 (2017) 750-764. https://doi.org/10.1016/j.rser.2017.05.147
[67] P. Toudret, J.F. Blachot, M. Heitzmann, P.A. Jacques, Impact of the Cathode Layer Printing Process on the Performance of MEA Integrating PGM Free Catalyst, Catal. 11 (2021) 669. https://doi.org/10.3390/catal11060669
[68] S.B. Park, Y. Park, Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC), Int. J. Precis. Eng. Manuf. 13 (2012)1145-1151. https://doi.org/10.1007/s12541-012-0152-x
[69] S. Karimi, N. Fraser, B. Roberts, R. Foulkes, Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods, Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/828070
[70] B.K. Kakati, D. Deka, Effect of resin matrix precursor on the properties of graphite composite bipolar plate for PEM fuel cell, Energ. Fuels 21 (2007) 1681-1687. https://doi.org/10.1021/ef0603582
[71] F. Yalcinkaya, E. Boyraz, J. Maryska, K. Kucerova, A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment, Mater. 13 (2020) 493. https://doi.org/10.3390/ma13020493
[72] S. Hube, J. Wang, L.N. Sim, T.H. Chong, B. Wu, Direct membrane filtration of municipal wastewater: Linking periodical physical cleaning with fouling mechanisms, Sep. Purif. Technol. 259 (2021) 118125. https://doi.org/10.1016/j.seppur.2020.118125
[73] A. Raza, S. Farrukh, A. Hussain, I. Khan, M.H.D. Othman, M. Ahsan, Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation, Membr. 11 (2021) 245. https://doi.org/10.3390/membranes11040245
[74] X.M. Tan, D. Rodrigue, A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly(Vinylidene Fluoride), Polym. 11 (2019) 1160. https://doi.org/10.3390/polym11071160
[75] J.E.K. Schawe, C. Wrana, Competition between Structural Relaxation and Crystallization in the Glass Transition Range of Random Copolymers, Polym. 12 (2020) 1778. https://doi.org/10.3390/polym12081778
[76] A. Kongkanand, W. Gu, M.F. Mathias, Proton-Exchange Membrane Fuel Cells with Low-Pt Content, in: R. Meyers (Eds.), Encyclopedia of Sustainability Science and Technology, New York, 2018. https://doi.org/10.1007/978-1-4939-7789-5_1022
[77] J. Thangavelautham, Degradation in PEM Fuel Cells and Mitigation Strategies Using System Design and Control, in: IntechOpen (Eds.), Proton Exchange Membrane Fuel Cell, Arizona, 2018, pp. 72208. https://doi.org/10.5772/intechopen.72208
[78] P. Joghee, J. Malik, S. Pylypenko, R. O’Hayre, A review on direct methanol fuel cells – In the perspective of energy and sustainability, MRS Energ. Sustain. 2 (2015) E3. https://doi.org/10.1557/mre.2015.4
[79] K. Kordesch, M. Cifrain, A comparison between the alkaline fuel cell (AFC) and the polymer electrolyte membrane (PEM) fuel cell, Fuel Cell Technol. Appl. (2010). https://doi.org/10.1002/9780470974001.f304065
[80] E.H. Yu, U. Krewer, K. Scott, Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells, Energ. 3 (2010) 1499-1528. https://doi.org/10.3390/en3081499
[81] L. Giorgi, F. Leccese, Fuel Cells: Technologies and Applications, Open Fuel Cell J. 6 (2013) 1-20. https://doi.org/10.2174/1875932720130719001
[82] D. Akinyele, E. Olabode, A. Amole, Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems, Invent. 5 (2020) 42. https://doi.org/10.3390/inventions5030042
[83] S.J. McPhail, Status and Challenges of Molten Carbonate Fuel Cells, Adv. Sci. Technol. 72 (2010) 283-290. https://doi.org/10.4028/www.scientific.net/AST.72.283
[84] J.H. Yu, C.W. Lee, Effect of Cell Size on the Performance and Temperature Distribution of Molten Carbonate Fuel Cells, Energ. 13 (2020) 1361. https://doi.org/10.3390/en13061361
[85] A.B. Stambouli, E. Travesa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renew. Sustain. Energ. Rev. 6 (2002) 433-455. https://doi.org/10.1016/S1364-0321(02)00014-X
[86] W. Li, Y. Wang, W. Liu, A review of solid oxide fuel cell application, IOP Conf. Ser.: Earth Environ. Sci. 619 (2020) 012012. https://doi.org/10.1088/1755-1315/619/1/012012
[87] V.N. Nguyen, L. Blum, Reversible fuel cells, Compend. Hydrog. Energ. 3 (2016)115-145. https://doi.org/10.1016/B978-1-78242-363-8.00005-0
[88] Y. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J.Q. Huang, D. Yu, Y. Liu, M.M. Titirici, Y.L. Chueh, H. Yu, Q. Zhang, A review of rechargeable batteries for portable electronic devices, InfoMat 1 (2019) 6-32. https://doi.org/10.1002/inf2.12000
[89] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303-4418. https://doi.org/10.1021/cr030203g
[90] Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energ. Chem. 59 (2021) 83-99. https://doi.org/10.1016/j.jechem.2020.10.017
[91] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A 3 (2015) 19218-19253. https://doi.org/10.1039/C5TA03471J
[92] H.R. Rezaie, H.B. Rizi, M.R. Khamseh, A. Öchsner, A Review on Dental Materials, Adv. Struct. Mater. 123 (2020).
[93] V.P.H. Huy, S. So, J. Hur, Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries, Nanomater. 11 (2021) 614. https://doi.org/10.3390/nano11030614
[94] Y. Miao, P. Hynan, A. van Jouanne, A. Yokochi, Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements, Energ. 12 (2019) 1074. https://doi.org/10.3390/en12061074
[95] A.H. Marincas, P. Ilea, Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications, Coat. 11 (2021) 456. https://doi.org/10.3390/coatings11040456
[96] Y. Hato, H.C. Chien, T. Hirota, Y. Kamiya, Y. Daisho, S. Inami, Degradation Predictions of Lithium Iron Phosphate Battery, World Electr. Veh. J. 7 (2015) 25-31. https://doi.org/10.3390/wevj7010025
[97] R.C. Masse, E. Uchaker, G. Cao, Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries, Sci. Chin. Mater. 58 (2015) 715-766. https://doi.org/10.1007/s40843-015-0084-8
[98] N.H. Barbhuiya, U. Misra, S.P. Singh, Synthesis, fabrication, and mechanism of action of electrically conductive membranes: a review, Environ. Sci.: Water Res. Technol. 7 (2021) 671-705. https://doi.org/10.1039/D0EW01070G
[99] B. Lakard, Electrochemical Biosensors Based on Conducting Polymers: A Review, Appl. Sci. 10 (2020) 6614. https://doi.org/10.3390/app10186614
[100] J.H.T. Luong, T. Narayan, S. Solanki, B.D. Malhotra, Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications, J. Funct. Biomater. 11 (2020) 71. https://doi.org/10.3390/jfb11040071
[101] S. Ramanavicius, A. Ramanavicius, Conducting Polymers in the Design of Biosensors and Biofuel Cells, Polym. 13 (2021) 49. https://doi.org/10.3390/polym13010049
[102] Z. Chen, S.N. Obaid, L. Lu, Recent advances in organic optoelectronic devices for biomedical applications, Opt. Mater. Expr. 9 (2019) 3843-3856. https://doi.org/10.1364/OME.9.003843
[103] D.K. Baisnab, S. Mukherjee, S. Das, A short review on inorganic thin films from device perspective, Chem. Solut. Synth. Mater. Des. Thin Film Device Appl. 1 (2021) 231-275. https://doi.org/10.1016/B978-0-12-819718-9.00007-8
[104] J. Zhao, Z. Chi, Z. Yang, X. Chen, M.S. Arnold, Y. Zhang, J. Xu, Z. Chi, M.P. Aldred, Recent developments of truly stretchable thin film electronic and optoelectronic devices, Nanoscale 10 (2018) 5764-5792. https://doi.org/10.1039/C7NR09472H
[105] M. Ahmadi, T. Wu, B. Hu, A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics, Adv. Mater. 29 (2017) 1605242. https://doi.org/10.1002/adma.201605242
[106] L. Cao, X. Liu, Z. Guo, L. Zhou, Surface/Interface Engineering for Constructing Advanced Nanostructured Light-Emitting Diodes with Improved Performance: A Brief Review, Micromach. 10 (2019) 821. https://doi.org/10.3390/mi10120821
[107] P.T. Huckabee, Optic Fiber Distributed Temperature for Fracture Stimulation Diagnostics and Well Performance Evaluation, SPE Hydraul. Fract. Technol. Conf. (2009). https://doi.org/10.2118/118831-MS
[108] M. Sciamanna, K.A. Shore, Physics and applications of laser diode chaos, Nat. Photonics 9 (2015) 151-16. https://doi.org/10.1038/nphoton.2014.326