Advanced Functional Membranes for Sensor Technologies


Advanced Functional Membranes for Sensor Technologies

A.R. Hernandez-Martinez

Sensors are modern data acquisition devices intended for detecting a specific change in the surrounding area and responding with an output signal. Among them, biological sensors (or biosensors) are of great interest due to their capacity for detecting molecules that indicate changes in people’s health. This chapter provides an overview of the polymeric membranes that have novel or advanced functions in applications for the development of lab-on-chip or sensor technologies. Important approaches in this matter include the improvement of membranes as supporting medium of recognition element of the sensor, advances in membrane composition for protecting the integrity of target molecules, or the option to filter undesired components. The chapter is divided into three sections: membrane fabrication, molecular probes and platforms for reading sensor devices.

Active Sensor, Target Molecule, Transducer, Wearable Technology

Published online 2/5/2022, 19 pages

Citation: A.R. Hernandez-Martinez, Advanced Functional Membranes for Sensor Technologies, Materials Research Foundations, Vol. 120, pp 315-333, 2022


Part of the book on Advanced Functional Membranes

[1] J. Janata, Chemical sensors, Anal. Chem. 64 (1992) 196–219.
[2] A. Ruiu, M. Vonlanthen, E.G. Morales-Espinoza, S.M. Rojas-Montoya, I. González-Méndez, E. Rivera, Pyrene chemosensors for nanomolar detection of toxic and cancerogenic amines, J. Mol. Struct. 1196 (2019) 1–7.
[3] A. Turner, I. Karube, G.S. Wilson, Biosensors : Fundamentals and Applications, Oxford University Press, 1987. (accessed August 17, 2021).
[4] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification. International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1, Biosens. Bioelectron. 16 (2001) 121–131.
[5] S. J. Chalk., IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-), (2019).
[6] H. Zhou, M. Wang, X. Jin, H. Liu, J. Lai, H. Du, W. Chen, A. Ma, Capacitive Pressure Sensors Containing Reliefs on Solution-Processable Hydrogel Electrodes, ACS Appl. Mater. Interfaces. 13 (2021) 1441–1451.
[7] H. Zhou, Z. Wang, W. Zhao, X. Tong, X. Jin, X. Zhang, Y. Yu, H. Liu, Y. Ma, S. Li, W. Chen, Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers, Chem. Eng. J. 403 (2021) 126307.
[8] M. Batool, A. Jalal, K. Kim, Sensors Technologies for Human Activity Analysis Based on SVM Optimized by PSO Algorithm, in: 2019 Int. Conf. Appl. Eng. Math. ICAEM, 2019: pp. 145–150.
[9] Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives, Faraday Discuss. 176 (2015) 447–458.
[10] A. Nait Aicha, G. Englebienne, K.S. van Schooten, M. Pijnappels, B. Kröse, Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry, Sensors. 18 (2018) E1654.
[11] B. Perriot, J. Argod, J.-L. Pepin, N. Noury, A network of collaborative sensors for the monitoring of COPD patients in their daily life, in: 2013 IEEE 15th Int. Conf. E-Health Netw. Appl. Serv. Heal. 2013, 2013: pp. 299–302.
[12] R.M. White, A Sensor Classification Scheme, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 34 (1987) 124–126.
[13] V. Naresh, N. Lee, A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors, Sensors. 21 (2021) 1109.
[14] M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, R. Suman, Sensors for daily life: A review, Sens. Int. 2 (2021) 100121.
[15] S. Lindsay, Introduction to Nanoscience, OUP Oxford, 2010.
[16] A.R. Hernandez-Martinez, Chapter 10 – Remote sensing for environmental analysis: Basic concepts and setup, in: Inamuddin, R. Boddula, A.M. Asiri (Eds.), Green Sustain. Process Chem. Environ. Eng. Sci., Elsevier, 2021: pp. 209–224.
[17] A. Hulanicki, S. Glab, F. Ingman, Chemical sensors: definitions and classification, Pure Appl. Chem. 63 (1991) 1247–1250.
[18] D.R. Thevenot, K. Tóth, R.A. Durst, G.S. Wilson, Electrochemical Biosensors: Recommended Definitions and Classification, Pure Appl. Chem. 71 (1999) 2333–2348.
[19] J. Labuda, R.P. Bowater, M. Fojta, G. Gauglitz, Z. Glatz, I. Hapala, J. Havliš, F. Kilar, A. Kilar, L. Malinovská, H.M.M. Sirén, P. Skládal, F. Torta, M. Valachovič, M. Wimmerová, Z. Zdráhal, D.B. Hibbert, Terminology of bioanalytical methods (IUPAC Recommendations 2018), Pure Appl. Chem. 90 (2018) 1121–1198.
[20] W.J. Koros, Y.H. Ma, T. Shimidzu, Terminology for membranes and membrane processes (IUPAC Recommendations 1996), Pure Appl. Chem. 68 (1996) 1479–1489.
[21]T.I.U. of P. and A. Chemistry (IUPAC), IUPAC – membrane (M03823), (n.d.).
[22] W.W. Ye, J.Y. Shi, C.Y. Chan, Y. Zhang, M. Yang, A nanoporous membrane based impedance sensing platform for DNA sensing with gold nanoparticle amplification, Sens. Actuators B Chem. 193 (2014) 877–882.
[23] L. Wang, Q. Liu, Z. Hu, Y. Zhang, C. Wu, M. Yang, P. Wang, A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection, Talanta. 78 (2009) 647–652.
[24] V. Rai, J. Deng, C.-S. Toh, Electrochemical nanoporous alumina membrane-based label-free DNA biosensor for the detection of Legionella sp, Talanta. 98 (2012) 112–117.
[25] V. Rai, H.C. Hapuarachchi, L.C. Ng, S.H. Soh, Y.S. Leo, C.-S. Toh, Ultrasensitive cDNA Detection of Dengue Virus RNA Using Electrochemical Nanoporous Membrane-Based Biosensor, PLOS ONE. 7 (2012) e42346.
[26] G. Rossi, L. Monticelli, Gold nanoparticles in model biological membranes: A computational perspective, Biochim. Biophys. Acta BBA – Biomembr. 1858 (2016) 2380–2389.
[27] L. Zhang, Y. Wang, M. Chen, Y. Luo, K. Deng, D. Chen, W. Fu, A new system for the amplification of biological signals: RecA and complimentary single strand DNA probes on a leaky surface acoustic wave biosensor, Biosens. Bioelectron. 60 (2014) 259–264.
[28] S. Sang, H. Witte, A novel PDMS micro membrane biosensor based on the analysis of surface stress, Biosens. Bioelectron. 25 (2010) 2420–2424.
[29] R.V. den Hurk, S. Evoy, A Review of Membrane-Based Biosensors for Pathogen Detection, Sensors. 15 (2015) 14045–14078.
[30] I.A. Dimulescu (Nica), A.C. Nechifor, C. Bǎrdacǎ (Urducea), O. Oprea, D. Paşcu, E.E. Totu, P.C. Albu, G. Nechifor, S.G. Bungău, Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes, Nanomaterials. 11 (2021) 1204.
[31] R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets, J. Mater. Chem. A. 6 (2018) 3522–3533.
[32] F. He, S. Liu, Detection of P. aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor, Talanta. 62 (2004) 271–277.
[33] S. Shanmugam, K. Ketpang, Md.A. Aziz, K. Oh, K. Lee, B. Son, N. Chanunpanich, Composite polymer electrolyte membrane decorated with porous titanium oxide nanotubes for fuel cell operating under low relative humidity, Electrochimica Acta. 384 (2021) 138407.
[34] O.A. Sadik, N. Du, I. Yazgan, V. Okello, Chapter 6 – Nanostructured Membranes for Water Purification, in: A. Street, R. Sustich, J. Duncan, N. Savage (Eds.), Nanotechnol. Appl. Clean Water Second Ed., William Andrew Publishing, Oxford, 2014: pp. 95–108.
[35] K. Yazda, K. Bleau, Y. Zhang, X. Capaldi, T. St-Denis, P. Grutter, W.W. Reisner, High Osmotic Power Generation via Nanopore Arrays in Hybrid Hexagonal Boron Nitride/Silicon Nitride Membranes, Nano Lett. 21 (2021) 4152–4159.
[36] J.L. Braun, S.W. King, E.R. Hoglund, M.A. Gharacheh, E.A. Scott, A. Giri, J.A. Tomko, J.T. Gaskins, A. Al-kukhun, G. Bhattarai, M.M. Paquette, G. Chollon, B. Willey, G.A. Antonelli, D.W. Gidley, J. Hwang, J.M. Howe, P.E. Hopkins, Hydrogen effects on the thermal conductivity of delocalized vibrational modes in amorphous silicon nitride…, Phys. Rev. Mater. 5 (2021) 035604.
[37] S. Jiang, T. Isik, C.Y. Akkaya, S. Kumari, V. Ortalan, Evaluation of Gallium Ion\Xe Plasma Beam for Patterning of Suspended Silicon Nitride Membranes, Microsc. Microanal. 27 (2021) 438–439.
[38] O. Sayginer, E. Iacob, S. Varas, A. Szczurek, M. Ferrari, A. Lukowiak, G.C. Righini, O.S. Bursi, A. Chiasera, Design, fabrication and assessment of an optomechanical sensor for pressure and vibration detection using flexible glass multilayers, Opt. Mater. 115 (2021) 111023.
[39] S.E. Henkelis, S.J. Percival, L.J. Small, D.X. Rademacher, T.M. Nenoff, Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes, Membranes. 11 (2021) 176.
[40] F. Vivaldi, P. Salvo, N. Poma, A. Bonini, D. Biagini, L. Del Noce, B. Melai, F. Lisi, F.D. Francesco, Recent Advances in Optical, Electrochemical and Field Effect pH Sensors, Chemosensors. 9 (2021) 33.
[41] J.L. Pablos, S. Vallejos, S. Ibeas, A. Muñoz, F. Serna, F.C. García, J.M. García, Acrylic Polymers with Pendant Phenylboronic Acid Moieties as “Turn-Off” and “Turn-On” Fluorescence Solid Sensors for Detection of Dopamine, Glucose, and Fructose in Water, ACS Macro Lett. 4 (2015) 979–983.
[42] M. Gómez-García, J.M. Benito, A.P. Butera, C.O. Mellet, J.M.G. Fernández, J.L.J. Blanco, Probing Carbohydrate-Lectin Recognition in Heterogeneous Environments with Monodisperse Cyclodextrin-Based Glycoclusters, J. Org. Chem. 77 (2012) 1273–1288.
[43] A.R. Hernandez-Martinez, Chapter 11 – Materials science and lab-on-a-chip for environmental and industrial analysis, in: Inamuddin, R. Boddula, A.M. Asiri (Eds.), Green Sustain. Process Chem. Environ. Eng. Sci., Elsevier, 2021: pp. 225–236.
[44] M. Khan, T. Li, A. Hayat, A. Zada, T. Ali, I. Uddin, A. Hayat, M. Khan, A. Ullah, A. Hussain, T. Zhao, A concise review on the elastomeric behavior of electroactive polymer materials, Int. J. Energy Res. 45 (2021) 14306–14337.
[45] J.-S. Jang, L.R. Winter, C. Kim, J.D. Fortner, M. Elimelech, Selective and sensitive environmental gas sensors enabled by membrane overlayers, Trends Chem. 3 (2021) 547–560.
[46] C. Gao, J. Liao, J. Lu, J. Ma, E. Kianfar, The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review, Rev. Inorg. Chem. 41 (2021) 1–20.
[47] A. Michalke, H.-J. Galla, C. Steinem, Channel activity of a phytotoxin of Clavibacter michiganense ssp. nebraskense in tethered membranes, Eur. Biophys. J. 30 (2001) 421–429.
[48] M. Domb, Wearable Devices and their Implementation in Various Domains, IntechOpen, 2019.
[49] J.J. Ferreira, C.I. Fernandes, H.G. Rammal, P.M. Veiga, Wearable technology and consumer interaction: A systematic review and research agenda, Comput. Hum. Behav. 118 (2021) 106710.
[50] A. Ometov, V. Shubina, L. Klus, J. Skibińska, S. Saafi, P. Pascacio, L. Flueratoru, D.Q. Gaibor, N. Chukhno, O. Chukhno, A. Ali, A. Channa, E. Svertoka, W.B. Qaim, R. Casanova-Marqués, S. Holcer, J. Torres-Sospedra, S. Casteleyn, G. Ruggeri, G. Araniti, R. Burget, J. Hosek, E.S. Lohan, A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges, Comput. Netw. 193 (2021) 108074.
[51] L. Nayak, S. Mohanty, S. Kumar Nayak, A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics, J. Mater. Chem. C. 7 (2019) 8771–8795.
[52] M. Buaki-Sogó, L. García-Carmona, M. Gil-Agustí, M. García-Pellicer, A. Quijano-López, Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes, Nanomaterials. 11 (2021) 2052.
[53] Z. Qi, M. Zhou, Y. Li, Z. Xia, W. Huo, X. Huang, Reconfigurable Flexible Electronics Driven by Origami Magnetic Membranes, Adv. Mater. Technol. 6 (2021) 2001124.
[54] M. Guo, J. Chi, C. Zhang, M. Wang, H. Liang, J. Hou, S. Ai, X. Li, A simple and sensitive sensor for lactose based on cascade reactions in Au nanoclusters and enzymes co-encapsulated metal-organic frameworks, Food Chem. 339 (2021) 127863.
[55] S. Park, H. Kim, S.-H. Paek, J.W. Hong, Y.-K. Kim, Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157:H7, Ultramicroscopy. 108 (2008) 1348–1351.
[56] M.F.M. Shakhih, A.S. Rosslan, A.M. Noor, S. Ramanathan, A.M. Lazim, A.A. Wahab, Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids, J. Electrochem. Soc. 168 (2021) 067502.
[57] T. Ozer, C.S. Henry, Review—Recent Advances in Sensor Arrays for the Simultaneous Electrochemical Detection of Multiple Analytes, J. Electrochem. Soc. 168 (2021) 057507.
[58] Z. Jia, M. Müller, T. Le Gall, M. Riool, M. Müller, S.A.J. Zaat, T. Montier, H. Schönherr, Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels, Bioact. Mater. 6 (2021) 4286–4300.
[59] Q. Wang, J. Guo, X. Lu, X. Ma, S. Cao, X. Pan, Y. Ni, Wearable lignin-based hydrogel electronics: A mini-review, Int. J. Biol. Macromol. 181 (2021) 45–50.
[60] Y. Xiong, X. Zhang, X. Ma, W. Wang, F. Yan, X. Zhao, X. Chu, W. Xu, C. Sun, A review of the properties and applications of bioadhesive hydrogels, Polym. Chem. 12 (2021) 3721–3739.
[61] I. Falina, N. Loza, S. Loza, E. Titskaya, N. Romanyuk, Permselectivity of Cation Exchange Membranes Modified by Polyaniline, Membranes. 11 (2021) 227.
[62] M. Sairam, S.K. Nataraj, T.M. Aminabhavi, S. Roy, C.D. Madhusoodana, Polyaniline Membranes for Separation and Purification of Gases, Liquids, and Electrolyte Solutions, Sep. Purif. Rev. 35 (2006) 249–283.
[63] M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review, Polymers. 13 (2021) 2003.
[64] Q.N. Al-Haidary, A.M. Al-Mokaram, F.M. Hussein, A.H. Ismail, Development of polyaniline for sensor applications: A review, J. Phys. Conf. Ser. 1853 (2021) 012062.
[65] S.A. Gupta, J.S. Singh, A Study of Conducting Electrochemical Sensors Based on Molecularly Imprinted Polymer on Carbon Nanostructure Using Polypyrrole Film: A Review, J. Sci. Res. 65 (2021) 110–115.
[66] M. Das, S. Roy, Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: A comprehensive review, Mater. Sci. Semicond. Process. 121 (2021) 105332.
[67] S. Sriprasertsuk, S.C. Mathias, J.R. Varcoe, C. Crean, Polypyrrole-coated carbon fibre electrodes for paracetamol and clozapine drug sensing, J. Electroanal. Chem. 897 (2021) 115608.
[68] G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A.J. Robinson, G. Hadziioannou, A. Pakdel, A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications, Mater. Today Phys. 18 (2021) 100402.
[69] T. Minami, W. Tang, K. Asano, Chemical sensing based on water-gated polythiophene thin-film transistors, Polym. J. (2021) 1–9.
[70] A. Husain, S. Ahmad, S.P. Ansari, M.O. Ansari, M.M.A. khan, DC electrical conductivity retention and acetone/acetaldehyde sensing on polythiophene/molybdenum disulphide composites, Polym. Polym. Compos. (2021) 09673911211002781.
[71] G.E. Fenoy, O. Azzaroni, W. Knoll, W.A. Marmisollé, Functionalization Strategies of PEDOT and PEDOT:PSS Films for Organic Bioelectronics Applications, Chemosensors. 9 (2021) 212.
[72] Gbolahan Joseph Adekoya, Rotimi Emmanuel Sadiku, Suprakas Sinha Ray, Nanocomposites of PEDOT:PSS with Graphene and its Derivatives for Flexible Electronic Applications: A Review, Macromol. Mater. Eng. 306 (2021) 716–24.
[73] N. Gao, J. Yu, Q. Tian, J. Shi, M. Zhang, S. Chen, L. Zang, Application of PEDOT:PSS and Its Composites in Electrochemical and Electronic Chemosensors, Chemosensors. 9 (2021) 79.
[74] L. Vigna, A. Verna, S.L. Marasso, M. Sangermano, P. D’Angelo, F.C. Pirri, M. Cocuzza, The effects of secondary doping on ink-jet printed PEDOT:PSS gas sensors for VOCs and NO2 detection, Sens. Actuators B Chem. 345 (2021) 130381.
[75] A.L. Ramos-Jacques, J.A. Lujan-Montelongo, C. Silva-Cuevas, M. Cortez-Valadez, M. Estevez, A.R. Hernandez-Martínez, Lead (II) removal by poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate), Eur. Polym. J. 101 (2018) 262–272.
[76] A Review on Materials and Technologies for Organic Large‐Area Electronics – Buga – 2021 – Advanced Materials Technologies – Wiley Online Library, (n.d.), (accessed August 24, 2021).
[76] Buga, Cláudia S., and Júlio C. Viana. “A Review on Materials and Technologies for Organic Large‐Area Electronics.” Advanced Materials Technologies (2021): 2001016.