Improving the Thermal Fatigue Strength of Hot-Working Tools by Laser Treatment

Improving the Thermal Fatigue Strength of Hot-Working Tools by Laser Treatment

Nikolai A. Chichenev, Sergey M. Gorbatyuk, Oleg A. Kobelev, Aleksei N. Pashkov

download PDF

Abstract. A method for increasing the thermal fatigue strength of a tool used in hot forming of bearing rings by applying circular laser tracks to the working surfaces is considered. Laser treatment is carried out with a power of 2.0…2.5 kW by applying on the end face working surface of the tool in the direction from the center to the periphery of the circular tracks with a common center coinciding with the center of the circumference of the end face; the tool is rotated at a constant angular rate, the spot diameter ds for each track is selected according to the dependence ds,i+1/ds,i = 0.85…0.90, and the laser radiation spots of adjacent tracks have a common point of contact. The results of pilot testing are presented, which confirmed the high technical and economic efficiency of the use of laser quenching for ejectors and punches. A tool made by machining, for example, an ejector of an AMP-70 automatic press, is subjected to volume quenching and tempering. The ejector material was steel 3Kh3M3F, quenching temperature in oil – 1030…1050 °С, tempering temperature – 580…610 °С. After volume quenching, additional machining is carried out, usually grinding, in order to remove the decarbonized layer of material formed during heat treatment and to give the working surface the required roughness class. The final stage in the tool manufacturing is the quenching of its working surface by laser treatment. Pilot testing showed that the use of laser treatment made it possible to increase the durability of ejectors of various types by 2 … 3 times, of deforming punches – by 2.2 times.

Keywords
Hot-Working Die Steel, Thermal Fatigue, Laser Quenching, Laser Spot Diameter, Diameter of Laser Tracks

Published online 1/5/2022, 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Nikolai A. Chichenev, Sergey M. Gorbatyuk, Oleg A. Kobelev, Aleksei N. Pashkov, Improving the Thermal Fatigue Strength of Hot-Working Tools by Laser Treatment, Materials Research Proceedings, Vol. 21, pp 43-50, 2022

DOI: https://doi.org/10.21741/9781644901755-8

The article was published as article 8 of the book Modern Trends in Manufacturing Technologies and Equipment

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Kovka i shtampovka: spravochnik. V 4 t. T. 2 Goryachaya ob”emnaya shtampovka / Pod obshch. red. E. I. Semenova. – M.: Mashinostroenie, 2010. – 720 s.
[2] Titov Yu. A., Kokorin V.N., Morozov O.I. Tekhnologiya kovki i ob”emnoi shtampovki: uchebnoe posobie. – Ul’yanovsk: UlGTU, 2016. – 111 s.
[3] B. K. Konstantinov. Tekhnologiya kovki i goryachei ob”emnoi shtampovki: uchebnoe posobie. – M. : NITs INFRA-M, 2019. – 104 s.
[4] E. I. Semenov. Kovka i goryachaya shtampovka: uchebnik. – M. : MGIU, 2011. – 414 s.
[5] A. Steniko, V. Tami. Sovershenstvovanie protsessa pryamoi zakalki na zavode kompanii Nucor Tuscaloosa. Chernye metally. 2018 № 12 s. 41-43.
[6] D. I. Vasil’ev, M. A. Tylkin, G. P. Teterin. Osnovy proektirovaniya deformiruyushchego instrumenta. – M.: Vysshaya shkola, 1980. – 223 s.
[7] Ya. M. Okhrimenko, L. I. Antonenko, L. I. Mironov. Shtampy dlya goryachei obrabotki metallov i ikh ekspluatatsiya. – M.: Mashinostroenie, I971. – 50 s.
[8] V. A. Korotkov. Issledovanie stoikosti shtampovogo instrumenta iz stali 5KhNM // Byul. «Chernaya metallurgiya». – 2010. – № 3 – s.72–76.
[9] Shtampy dlya goryachego deformirovaniya metallov / pod obshch. red. M. A. Tylkina. – M.: Vysshaya shkola, 1977. – 496 s.
[10] S. N. Aqida, F. Calosso, D. Brabazon, S. Naher, M. Rosso. Thermal fatigue properties of laser treated steels. Int. J. Mater. Form. 2010. № 3. pp. 797–800. https://doi.org/10.1007/s12289-010-0890-1
[11] A. E. Smirnov. Upravlenie fazovym sostavom kompleksno-legirovannykh teplostoikikh stalei pri vakuumnoi tsementatsii i zakalke // Metallovedenie i termicheskaya obrabotka metallov. 2020 .- № 9(783) .- s. 45 – 52.
[12] G. V. Levchenko, S. B. Bobyr’, E. G. Demina, S. A. Zdorovets, Ya. Yu. Yakimenko. Vliyanie mikrolegirovaniya na strukturu i termotsiklicheskuyu stoikost’ nizkolegirovannykh shtampovykh stalei // Metaloznavstvo ta termіchna obrobka metalіv. 2008. № 1. s. 51–57
[13] A. B. Akinin, S. V. Boev. Povyshenie stoikosti chekanochnogo instrumenta iz stali Kh12MF provedeniem zakalki v azote vysokogo davleniya i termotsiklirovaniya // Metallovedenie i termicheskaya obrabotka metallov. 2020. № 2 (776). s. 31 – 36
[14] N. Maharjan, W. Zhou, Y. Zhou, N .Wu. Underwater laser hardening of bearing steels. Journal of Manufacturing Processes. 2019. Vol. 47, pp. 52-61. https://doi.org/10.1016/j.jmapro.2019.08.020
[15] A. Khorram, Jamaloei A.Davoodi, A. Jafari, M .Moradi. Nd:YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation. Optics and Laser Technology. 2019/ Vol. 119, Article № 105617. https://doi.org/10.1016/j.optlastec.2019.105617
[16] Balajaddeh M. Bahrami, Moosavy H. Naffakh. Pulsed Nd:YAG laser welding of 17-4 PH stainless steel: Microstructure, mechanical properties, and weldability investigation. 2019. Optics and Laser Technology. Vol. 119, article № 105651. https://doi.org/10.1016/j.optlastec.2019.105651
[17] S. G. Gornyi, Yu. B. Grechko, M. I. Patrov, K. V. Yudin, V. I. Yurevich. Lazernaya markirovka materialov // Fotonika, 2007. № 3. s. 16-22.
[18] T. Dikova. Surface modification of 3Ch2W8F and 4Ch5MFS steels by CO2 laser // J. of the Technical University at Plovdiv “Fundamental Sciences and Applications”. 2006. Vol. 13 (7). pp. 81–90.
[19] Ho Jun Shin, Young Tae Yoo. Microstructural and hardness investigation of hot-work tool steels by laser surface treatment // J. of Materials Processing Technology. 2008. Vol. 201 pp. 342–347. https://doi.org/10.1016/j.jmatprotec.2007.11.232
[20] V. V. Morozov, A. N. Shlegel’, A. V. Aborkin. Empiricheskie modeli lazernogo uprochneniya rabochikh kromok detalei formovykh komplektov stekloformuyushchikh mashin // Fundamental’nye i prikladnye problemy tekhniki i tekhnologii. 2011. № 2 (286). s. 79–84.
[21] Marochnik stali i splavov. http://splav-kharkov.com/mat_start.php?name_id=287 (data obrashcheniya 24.02.2021).
[22] V. A. Lunev. Matematicheskoe modelirovanie i planirovanie eksperimenta: uchebnoe posobie. – SPb.: Izd-vo SPbGPI, 2012. – 153 s.
[23] Yu. A. Makarichev, Yu. N. Ivannikov. Metody planirovanie eksperimenta i obrabotki dannykh: uchebnoe posobie. – Samara: Samar. gos. tekhn. un-t, 2016. – 131 s.
[24] N. I. Sidnyaev. Teoriya planirovaniya eksperimenta i analiz statisticheskikh dannykh : uchebnik i praktikum dlya vuzov. — M.: Izdatel’stvo Yurait, 2019. — 495 s.
[25] N. A. Chichenev, S. M. Gorbatyuk, M. G. Naumova; I. G. Morozova. Using the similarity theory to describe laser hardening processes. CIS Iron and Steel Review. 2020. Vol. 19. pp. 44–47. https://doi.org/10.17580/cisisr.2020.01.09
[26] A. G. Grigor’yants, I. N. Shiganov, A. I. Misyurov. Tekhnologicheskie protsessy lazernoi obrabotki: Uch. posobie. – M.: Izd-vo MGTU im. N. E. Baumana, 2006. – 663 s.
[27] Lazernye tekhnologii obrabotki materialov: sovremennye problemy fundamental’nykh issledovanii i prikladnykh razrabotok / Pod red. V. Ya. Panchenko. – M.: FIZMATLIT, 2009. – 664 s.
[28] I. A. Pinakhin, V. A. Chernigovskii. Osnovy ob”emnogo impul’snogo lazernogo uprochneniya instrumental’nykh i konstruktsionnykh materialov [Elektronnyi resurs]: monografiya. — Stavropol’: izd-vo SKFU, 2014. — 160 s. Rezhim dostupa: https://rucont.ru/efd/304170.
[29] Eron’ko, S.P., Oshovskaya, E.V., Tkachev, M.Y. Fast replacement of submersible tundish nozzles in a continuous slab-casting machine (2016) Steel in Translation, 46 (1), pp. 33-38. https://doi.org/10.3103/S0967091216010034
[30] A. V. Aborkin, V. E. Vaganov, A. N.Shlegel’, I. M. Bukarev. Effect of laser hardening on die steel micro hardness and surface quality // Metallurgist. 2015. T. 59. № 7-8. s. 619-625. https://doi.org/10.1007/s11015-015-0148-8