Ensemble Empirical Mode Decomposition Based Deep Learning Model for Short-Term Wind Power Forecasting

Ensemble Empirical Mode Decomposition Based Deep Learning Model for Short-Term Wind Power Forecasting

Juan Manuel González-Sopeña, Vikram Pakrashi, Bidisha Ghosh

download PDF

Abstract. In the last few years, wind power forecasting has established itself as an essential tool in the energy industry due to the increase of wind power penetration in the electric grid. This paper presents a wind power forecasting method based on ensemble empirical mode decomposition (EEMD) and deep learning. EEMD is employed to decompose wind power time series data into several intrinsic mode functions and a residual component. Afterwards, every intrinsic mode function is trained by means of a CNN-LSTM architecture. Finally, wind power forecast is obtained by adding the prediction of every component. Compared to the benchmark model, the proposed approach provides more accurate predictions for several time horizons. Furthermore, prediction intervals are modelled using quantile regression.

Keywords
Short-Term Wind Power Forecasting, Ensemble Empirical Mode Decomposition, Deep Learning, Prediction Intervals, Quantile Regression, Wind Power

Published online , 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Juan Manuel González-Sopeña, Vikram Pakrashi, Bidisha Ghosh, Ensemble Empirical Mode Decomposition Based Deep Learning Model for Short-Term Wind Power Forecasting, Materials Research Proceedings, Vol. 20, pp 58-65, 2022

DOI: https://doi.org/10.21741/9781644901731-8

The article was published as article 8 of the book Floating Offshore Energy Devices

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. A. Matos, R. J. Bessa, Setting the operating reserve using probabilistic wind power forecasts, IEEE Trans. Power Syst. 26 (2) (2010) 594-603. https://doi.org/10.1109/TPWRS.2010.2065818
[2] G. P. Swinand, A. O’Mahoney, Estimating the impact of wind generation and wind forecast errors on energy prices and costs in Ireland, Renew. Energy 75 (2015) 468-473. https://doi.org/10.1016/j.renene.2014.09.060
[3] G. Giebel, G. Kariniotakis, Wind power forecasting — a review of the state of the art, in: Renewable Energy Forecasting, Elsevier, 2017, pp. 59-109. https://doi.org/10.1016/B978-0-08-100504-0.00003-2
[4] H. Liu, H.Q. Tian, C. Chen, Y.F. Li, A hybrid statistical method to predict wind speed and wind power, Renew. Energy 35 (8) (2010) 1857-1861. https://doi.org/10.1016/j.renene.2009.12.011
[5] Y. Zhang, K. Liu, L. Qin, X. An, Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods, Energy Convers. Manag. 112 (2016) 208-219. https://doi.org/10.1016/j.enconman.2016.01.023
[6] A. A. Abdoos, A new intelligent method based on combination of VMD and ELM for short term wind power forecasting, Neurocomputing 203 (2016) 111-120. https://doi.org/10.1016/j.neucom.2016.03.054
[7] J. B. Bremnes, Probabilistic wind power forecasts using local quantile regression, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 7 (1) (2004) 47-54. https://doi.org/10.1002/we.107
[8] R. J. Bessa, V. Miranda, A. Botterud, J. Wang, E. M. Constantinescu, Time adaptative conditional kernel density estimation for wind power forecasting, IEEE Trans. Sustainable Energy 3 (4) (2012) 660-669. https://doi.org/10.1109/TSTE.2012.2200302
[9] E. Xydas, M. Qadrdan, C. Marmaras, L. Cipcigan, N. Jenkins, H. Ameli, Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators, Appl. Energy 192 (2017) 382-394. https://doi.org/10.1016/j.apenergy.2016.10.019
[10] A. Kavousi-Fard, A. Khosravi, S. Nahavandi, A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans. Power Syst. 31 (1) (2015) 18-26. https://doi.org/10.1109/TPWRS.2015.2393880
[11] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.C. Yen, C. C. Tung, H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1971) (1998) 903-995. https://doi.org/10.1098/rspa.1998.0193
[12] Z. Wu, N. E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal. (01) (2009) 1-41. https://doi.org/10.1142/S1793536909000047
[13] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
[14] H. Madsen, P. Pinson, G. Kariniotakis, H. A. Nielsen, T. S. Nielsen, Standardizing the performance evaluation of short-term wind power prediction models, Wind Engineering 29 (6) (2005) 475-489. https://doi.org/10.1260/030952405776234599
[15] J. Juban, N. Siebert, G. N. Kariniotakis, Probabilistic short-term wind power forecasting for the optimal management of wind generation, in: 2007 IEEE Lausanne Power Tech, IEEE, 2007, pp. 683-688. https://doi.org/10.1109/PCT.2007.4538398
[16] H. A. Nielsen, H. Madsen, T. S. Nielsen, Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 9 (1-2) (2006) 95- 108. https://doi.org/10.1002/we.180
[17] A. U. Haque, M. H. Nehrir, P. Mandal, A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting, IEEE Trans. Power Syst. 29 (4) (2014) 1663-1672. https://doi.org/10.1109/TPWRS.2014.2299801
[18] C. Wan, J. Lin, J. Wang, Y. Song, Z. Y. Dong, Direct quantile regression for non- parametric probabilistic forecasting of wind power generation, IEEE Trans. Power Syst. 32 (4) (2016) 2767-2778. https://doi.org/10.1109/TPWRS.2016.2625101
[19] C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, K. P. Wong, Probabilistic forecasting of wind power generation using extreme learning machine, IEEE Trans. Power Syst. 29 (3) (2013) 1033-1044. https://doi.org/10.1109/TPWRS.2013.2287871
[20] Wind Power Generation Data, http://smartgriddashboard.eirgrid.com/#all/wind, [Online, accessed 15-Jul-2019]
[21] P. Pinson, G. Kariniotakis, Conditional prediction intervals of wind power generation, IEEE Trans. Power. Syst. 25 (4) (2010) 1845-1856. https://doi.org/10.1109/TPWRS.2010.2045774